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Inversion of sound-speed and density profiles in deep ocean 
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V6X 1A5, Canada 
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Wide-angle seismic reflections obtained in a deep ocean environment are analyzed to obtain 
estimates of the sound-speed profile and density contrasts in the surficial sediment layers. The 
analysis begins with a new deconvolution technique based on autoregressive modeling, which is 
used to deconvolve the bubble-pulse signature from the data. Sound-speed profiles are then 
obtained by inverting the identified arrivals by first treating them as reflection events, and then as 
refraction events. The first inversion was performed twice, once using a Backus-Gilbert approach 
(to produce a smooth model ) and once using a linear programming method ( to produce a blocky 
model). For the refraction inversion, the Garmany p -- r method was used. Finally, the offset- 
dependent phase shifts of supercritically reflected arrivals were estimated using the complex 
Karhunen-Loeve transform. These phase shifts were used with Rayleigh's equation in a new 
inversion scheme to obtain density and sound-speed contrasts in the shallow sediments. 

PACS numbers: 43.30.Pc, 43.60.Pt, 43.20.Bi, 92.10.Vz 

INTRODUCTION 

Determination of both sound-speed and density profiles 
for the surficial sediment layers in a deep ocean environment 
is a prerequisite for the construction of realistic models per- 
taining to acoustic interaction with the ocean bot. tom. In a 
previous study, Chapman et al. 1 described an L 1 deconvolu- 
tion processing technique and a simple model by which the 
sound-speed gradient in the surficial sediments was deter- 
mined from a suite of recordings of wide-angle seismic re- 
flections at varying source-receiver offset. This determina- 
tion involved the •assumptions that (a) the sound-speed 
gradient in the sediment layer of interest remained constant 
with depth and (b) the analyzed arrivals corresponded to 
waves which had been refracted within the constant gradient 
layer. Hence, an expression describing the different arrival 
times could be used to determine the sound-speed gradient. 
This type of model has also been used by Dicus and Ander- 
son, 2 Santaniello et al., 3 and Chapman 4 to analyze bottom 
reflection data. 

In this paper, we present a new method for bubble-pulse 
deconvolution and a different approach to the inversion of 
ocean bottom reflection data in which there is no need to 

invoke the assumptions made by other workers. We first 
describe an autoregressive technique for the deconvolution 
of seismic data which is based on the spectral characteristics 
of the full source wavelet impinging on the ocean bottom. 
This technique does not require a priori knowledge of the 
wavelet signature. Three inversion techniques are then ap- 
plied to construct a one-dimensional sound-speed model: In 
the first two methods the analyzed arrivals are treated as 
reflection data, while in the last method, the arrivals are 
treated as refractions. The sound-speed model is assumed to 
be either a layered or a continuous function of depth (as the 
different techniques require). 

Following the analysis of the sound-speed profile, we 
use the complex Karhunen-Loeve transform to determine 
the trace to trace phase differential of certain events. This 
phase information is then inverted to obtain the density and 
sound-speed contrast across an internal sediment layer. That 
is, we first estimate the offset-dependent phase shifts for a 
number of supercritical reflection arrivals, assumed to be 
first multiple reflections from an internal layer, and then use 
this information to estimate both the sound speed and den- 
sity of the sediment layers. 

Some of the techniques used in this work are in wide- 
spread use in exploration geophysics for the analysis of seis- 
mic data. As will be shown in this paper, they provide power- 
ful analysis methods which make few assumptions about the 
sub-bottom profile. However, these methods have been 
largely overlooked by the underwater acoustics community 
in processing ocean bottom reflection data, and therefore 
more detailed descriptions of the techniques have been in- 
cluded in the Appendices. 

I. DATA ACQUISITION 

The data set analyzed in this paper was obtained in a 
wide-angle seismic reflection experiment carried out at a site 
in the Alaskan Abyssal Plain where the sea floor is uniformly 
flat, with an average depth of 3625 m over the track of the 
shot run. The ocean bottom in this region of the plain con- 
sists of turbidire layers, and the near surface sediments are 
composed of unconsolidated silty deposits. In the acquisi- 
tion stage, small explosive charges (0.82 kg) were deployed 
at an average depth of 190 m, and a hydrophone suspended 
at 415 m was used to record the ocean bottom reflections at 

offsets ranging from 2-40 km. 
The data shown in Fig. 1 were sampled at 0.667 ms. It 

should be noted that in all plots of the seismic sections (un-, 
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f= 1/2TB•25 Hz, the second at 75 Hz, etc. The effect of 
including the remaining bubble-pulse train is to shift the 
notch positions closer to zero. The modulation superim- 
posed on the bubble-pulse modulation is, of course, due to 
the ghost delay. 

Our debubbling technique involves bandpassing the 
seismograms to the lowest frequency band which is con- 
tained between two successive major bubble notches, in this 
case between about 10-60 Hz [Fig. 2(b) ]. An autoregres- 
sive (AR) algorithm (Oldenburg et al. 7; Walker and U1- 
rych 8) is used to extend the frequency band toward both the 
lower and the higher frequencies (Appendix A). The exten- 
sion process is based on the limited frequency information of 
the bandpassed data and does not see the original bubble- 
notch periodicity. Hence, it produces a relatively white spec- 
trum corresponding to a seismogram in which the bubble- 
pulse train is suppressed. 

As a simple example a short time window of the record- 
ed seismograms [Fig. 3 (a) ] is used in which only the direct 
arrival and the ghost are present. Figure 3(b) shows the 

bandlimited (10-60 Hz) seismograms resampled at 1.333 
ms, while the results of the spectral extension AR algorithm 
are shown in Fig. 3 (c). As is clearly seen, the bubble-pulse 
effects are largely diminished. 

The shallow portion of data following the first reflection 
from the sea floor (Fig. 1 ) was deconvolved using the pro- 
cessing procedure described above. Figures 4-6 show the 
input data, the bandpassed and resampled data, and the AR 
processed data, respectively. Although the final decon- 
volved results have simplified the overall appearance of the 
data and have delineated four distinct events in the time win- 

dow 0-200 ms, the phase of the deconvolved output is con- 
siderably less consistent than that of the bandlimited data 
shown in Fig. 5. Consequently, having noted the locations of 
the four events delineated by the AR process, the band- 
passed presentation is used for the actual picking of the trav- 
el time-offset ( T- X) trajectories to be inverted. 

The four time-offset trajectories T(X) representing the 
events delineated by the AR deconvolution are shown in Fig. 
5 and summarized in Table I. 
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FIG. 3. (a) The original data, sampled at 0.667 ms, taken from a window 
aligned on the direct arrival. (b) The data in (a) after bandpass filtering 
( 10-60 Hz), and resampling at 1.333 ms. (c) The data in (b) after applica- 
tion of the AR process. 

III. STACKING TO INTERVAL SOUND-SPEED 
INVERSION 

In this first inversion to obtain an interval sound-speed 
model, the travel time trajectories were interpreted by treat- 
ing the events shown in Fig. 5 as reflections from sub-bottom 
layers. Under the assumption of a one-dimensional layered 
earth in which the relation (Vi +• - Vi )/Vi <1 holds, the 
equation governing the travei time-offset t ß t• ) ! relations 
for the reflection from the ith layer interface is given by 

T(•) 2 = T•)i d- X2/ 2 i Vi, (1) 

where Toi is the two-way vertical travel time to the ith reflec- 
tor, X is the source-receiver offset, and Vi is a weighted aver- 
age sound speed from the surface to the ith reflector [ known 
in the seismic industry as the stacking sound speed and as- 
sumed to be a good approximation to the quantity known as 
the root-mean-square (rms) sound speed (Aki and Rich- 
ards9) ]. • 

Dix •ø has shown that the relation between the layer in- 
terval sound speeds and the rms sound speeds is given by 

2 __ 1 • v•At•, (2) firms -- To'•'. j: 1 
where Ate is the vertical incidence two-way travel time 
through the jth layer and v: is the interval sound speed in the 
jth layer. In this section, Eq. (2) is used to estimate the 
interval sound-speed profile. 

Two stable solutions to the integral representation of 
Eq. (2) have been presented in a recent publication by 
Oldenburg et al. TM The first technique is based on Backus- 
Gilbert linear inverse theory and is designed to yield an in- 
terval sound-speed model which is a continuous function of 
depth. The second technique is a linear programming ap- 
proach and is designed to yield a layered interval sound- 
speed model. A brief description of these techniques is given 
in Appendix B. 

The first step in the inversion procedure is to obtain the 
rms sound speeds V•m• and the vertical two-way travel times 
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TIME (seconds) 

FIG. 4. The first 1.2 s of original data following 
the direct wave. 

Toi for each reflection trajectory. Using Eq. (1), the travel 
time data for each of the reflection trajectories summarized 
in Table I have undergone linear regression analysis ( T 2 vs 
X 2) to estimate Toi, Virms, and their associated standard de- 
viations. These quantities are summarized in Table II. The 
first three rms sound speeds were then inverted using the 
methods mentioned above. Note that, because of its rms 

sound speed and the time separation To4- To l, the fourth 
trajectory was identified as a water surface multiple of the 
first bottom bounce, and was not included in the inversion. 

The estimated interval sound-speed profiles, as a func- 
tion of normal incidence two-way travel time, are shown in 
Fig. 7(a) (Backus-Gilbert approach) and (b) (linear pro- 
gramming solution). The depths z, corresponding to the 
two-way travel times, were computed using 

1444 J. Acoust. Soc. Am., Vol. 79, No. 5, May 1986 

z(t) = -•- v(t')dt' 

and are also indicated in Fig. 7 (a) and (b). Apart from the 
basic differences in model structure inherent in these con- 

struction algorithms, the results are quite consistent, with an 
average sediment sound speed of about 1650 m/s and an 
average sound-speed gradient over the first 100 m of 
2.7 _ 0.2 s-1. The differences in the shape of the sound- 
speed curves are due to the design of the respective algor- 
ithms and the underdetermined nature of the problem. In 
view of the detected reflection at the zero-offset time corre- 

sponding to event 2 (see Table II) and the very large gradi- 
ent in the linear programming solution at this time, the lin- 
ear programming model is probably the preferred one. This 
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FIG. 5. The data as in Fig. 4 after band- 
pass filtering (10-60 Hz) and resam- 
pling at 1.333 ms. The marked events are 
summarized in Table I and are used in 

the sound-speed inversion. 

model consists basically of two layers: a shallow layer about 
50 m thick with an average sound speed of 1540 m/s, and an 
underlying layer with an approximate sound speed of 1760 

These results can also be compared with the profile ob- 
tained by Chapman et al. 1 using the simple interpretation 
that event 3 was a reflection from a constant sound-speed 
layer. The average sound speed determined in that work 
( 1610 _ 50 m?s over the first 100 m) is consistent with the 
present results. 

IV. RAY PARAMETER-INTERCEPT TIME (p - 'r) 
SOUND-SPEED INVERSION 

In view of the large sound-speed gradients expected in 
the uppermost sediments, it is possible that the third event 
(Fig. 5), which was taken to be a reflection arrival in the 
analysis above, corresponds instead to a travel path of energy 

1445 J. Acoust. Soc. Am., Vol. 79, No. 5, May 1986 

which was continuously refracted in its passage through the 
sediment layers. To assess the result of this interpretation, 
the arrivals of event 3 were treated as refractions, and subse- 

quently inverted using the p -- •- method ofGarmany et al. 12 
This procedure is outlined below, and discussed in more de- 
tail in Appendix C. 

, The inversion begins by transforming the T-- X trajec- 
tory of event 3 into the p -- •- domain. In this work we have 
used a cubic spline to obtain p = dT?dX (which is the ray 
parameter sin t9 ?v in a one-dimensional earth), and then cal- 
culated the intercept time •- using the relation •- = T--pX. 
The plot of the trajectories of the first and third events in the 
p- •- domain is shown in Fig. 8(a). The p value at the 
intersection of two events corresponds to the critical angle 
arrival at the respective interface, and hence may be directly 
translated into the sound speed of the lower layer. In this 
case the p -- •-trajectory of the intermediate layer is missing, 
but the sound speed of the lowest layer can still be estimated 
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FIG. 6. The data as in Fig. 5 after applica- 
tion of the AR process. 

to be 1650 q- 100 m/s. 
The intercept time r(p) and the ray parameter p for a 

layered earth model are related via the relation 

r(p) = 2 [u(z)2 __p2] 1/2 dJ, (3) 

where Zp is the turning depth for the ray that left the source 
with the ray parameter p and u (z) is the wave slowness ( i.e., 
reciprocal sound speed) at depth z. 

With the assumption that sound speed increases mono- 
tonically with depth, and using a change of variables from 
depth (z) to slowness (u), Eq. (3) can be transformed into 

7'(p) = 2Uma x m(u)(u 2 --/t)2) 1/2 du, (4) 

with m (u) defined by -- dz (u)/du and the above monotoni- 
city implying that Umax = { 1/[ V (Z = 0) ] }. Equation (4) 
can be solved by a variety of methods. However, since m (u) 

is required to be positive, the problem is readily addressed 
using a linear programming technique. 

Before proceeding with the p- r inversion the inter- 
cept travel time portion r of the water column, that is, the 
vertical component of the travel time through the water, is 
removed. The details of this layer stripping operation are 
given in Shultz •3 and a short description of the operation is 
found in Appendix C. The end result is a p -- r curve [Fig. 
8(b)] simulating the case where both source and receiver 
have been placed on the ocean bottom. 

The results shown in Fig. 9 are obtained by inverting the 
data of Fig. 8 (b) using the Garmany method. It appears that 
the inverted refraction trajectory does not necessarily re- 
quire a single constant sound-speed gradient. As is shown in 
the example in Appendix C, had the data required a sound- 
speed gradient, the method would have been able to follow it 
reasonably closely. Instead, two distinct subdivisions of the 
sediment layer were delineated: (a) a 68-m-thick layer with 

1446 J. Acoust. Soc. Am., Vol. 79, No. 5, May 1986 Chapman eta/. ß Inversion of profiles in ocean sediments 1446 



TABLE I. Arrival times for four picked horizons used in the rms and p -- •- 
inversion procedures (see Fig. 5). 

Horizon number 

1 2 3 4 

x (km) T (s) T (s) T (s) T (s) 

2.0 4.594 4.663 4.730 
3.7 5.041 5.102 5.161 
5.7 5.811 5.864 5.908 
7.8 6.810 6.858 6.888 
9.5 7.710 7.749 7.771 

11.2 8.665 8.710 
13.1 9.778 9.811 
15.0 10.924 10.952 
17.1 12.219 12.234 
18.8 13.282 13.290 

4.850 

5.278 

6.024 

6.995 

7.875 

8.815 

an average sound speed of 1515 m/s and (b) a 32-m-thick 
layer with an average sound speed of 1725 m/s. 

The gradient observed in Fig. 9 for the first layer com- 
pares favorably with the constant sound-speed gradient of 
1.1 s-: estimated by Chapman et al., • in which the third 
arrival was treated as a refracted event. In their work it is 

likely that the value obtained was strongly influenced by the 
shallow near surface gradient, since only large offset data 
were used. 

V. COMPARISON OF SOUND-SPEED INVERSION 

RESULTS 

The stacking to interval sound-speed inversions consid- 
er the observed T-- X trajectories to be reflection arrivals. 
They also assume that the measured stacking sound speeds 
constitute reasonable approximations to the rms sound 
speeds. This latter assumption tends to break down for data 
in which source-receiver offsets are comparable to or larger 
than the depth of the reflecting interface. In the model study 
here, the sediment layer is relatively thin, with a sound speed 
which is comparable to the sound speed of the water column. 
Consequently, we have assumed that the straight ray ap- 
proximation needed for the estimation of the stacking sound 
speeds holds reasonably well over the offsets used. The mod- 
els (Fig. 7) obtained from this inversion agree reasonably 
well with the one presented by Chapman et al.: (in which 
they treated arrivals as reflections from the bottom of a con- 
stant sound-speed layer). 

Nevertheless, we recognize the possibility that event 3 in 
the data may actually correspond to refracted arrivals. With 
this possibility in mind, we have approached the inversion 
process using the œ -- •-inversion method described by Gar- 
many et al. •2 The results of this inversion (Fig. 9) generally 

TABLE II. Zero-offset times, rms sound speeds, and associated standard 
deviations determined from the picks shown in Table I. 

Horizon number 

1 2 3 4 

T O (s) 4.397 4.468 4.535 4.665 
Vms (km/s) 1.500 1.501 1.505 1.497 
Vms (km/s) 0.001 0.001 0.001 0.001 

TWO-WAY TIME (seconds) 

t- 
O 

o • o • o 

IIIIIIIIl•111111111•1111111111111111111 
"''"'"1'"'"'"1",,,,,,,• ....... 

:::::::::::::::::::::::::::::::::::::::: ß 
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ß 
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DEPTH BELOW WATER BOTTOM 

(meters) 

FIG. 7. (a) The Backus-Gilbert-inversion interval sound-speed profile. 
(b) The linear-programming inversion interval sound-speed 

agree with those of Fig. 7. However, clear differences in the 
details of the models exist. That is, although all models rise 
from a sound speed of 1.5 km/s to about 1.75 km/s at a depth 
of about 100 m, local sound-speed gradients differ substan- 
tially. Considering that the stacking sound-speed inversion 
used additional information contained in the data of event 2 

• 3 

5 
0.1 

(a) 
_ 

ORIGINAL DATA 

I I I I I I I I I I 

I : ! : I : I l 
0.2 0.3 0.4 0.5 0.6 

P 

0.00 

0.05 

0.10 

0.15 - 

0. 

REDUCED PROFILE 

I I t I I I I I I ! -- 

(b) 

I , I , I , ! , I 
0.2 0.3 0.4 0.5 0.6 

P 

FIG. 8. (a) The œ -- •- trajectories of the first and third events. (b) The 
œ -- •- trajectory of the third event after "stripping" of the first event. 
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FIG. 9. The result of p -- •- inversion on the data shown in Fig. 8(b). 

and the excessive source-receiver offsets in the data, we anti- 
cipate that the results presented in Fig. 7 are somewhat bi- 
ased toward higher sound speeds. 

We conclude that the general agreement between all in- 
version results suggests that the data of event 3 consists of a 
mixture of both reflection and refraction arrivals. Since all 

inversions minimize the misfit to the observations, portions 
of the data set which do not fit well the preconceived as- 
sumptions of that inversion model will tend to be discounted 
in the final model, allowing a reasonable result. In other 
words, the best fit to the points as reflection data tends to 
discard the points which actually correspond to refraction 
arrivals, and vice versa. 

Vl. DENSITY AND SOUND-SPEED INVERSION-- 

INVERSION OF PHASE-SHIFT INFORMATION 

Postcritical reflections from a liquid-liquid interface 
undergo a phase shift which is dependent on the angle of 
incidence and on both the sound-speed and density contrast 
across the interface. Measured values of this phase shift for 
different angles of incidence can be used to determine the 
density and sound-speed ratios across the interface. 

Consider an acoustic plane wave p(x. z. t•, nrnna•atin• ................... x--, --, - / r-vrw•:• ..... • 

in some arbitrary direction defined by 8 -- tan- • (kx/kz ), in 
a water column of constant depth. From the wave equation 
we have 

PR (x,z, t) =Po exp[ico(t--alX --•1 z) ], 

whereal = kx/(z),• 1 = kz/(z) , and k• and k z are the horizon- 
tal and vertical wavenumbers, respectively. 

Let V l and v2 represent the sound speed in the water and 
in the material underlying the water, respectively. Waves 
impinging at an angle of incidence 0 > Oc (where Oc is the 
critical angle) will, upon reflection, undergo changes in both 
the phase and amplitude (Rayleighl4; Arons and YennielS). 

For 0 > Oc the reflected wave is expressed by 

pR (x, z, t) = rpo exp[ ico( t - alX +/31z) + i2elcol/co], 

with r the magnitude of the reflection coefficient and 2e the 
associated phase change. The phase-shift angle e depends 
upon the ratio of the densities and the ratio of the sound 
speeds of the two media. Explicitly, 

tan e = (,O1/,O2)[tan 2 0- (/)1//)2) 2 sec 2 0] 1/2. (5) 

Consider an experiment in which a set of seismograms 
Sk (k = 1,...,N) has been recorded at some small depth be- 
neath the water surface. Analysis of the reflected waveforms 
of each seismogram will provide estimates of the phase-shift 
angle ek, while 0k can be determined from the shot-receiver 
offset and the depth of the water column. The data set 
{ek ,0k ) k = 1,N can be inverted to find estimates ofp2 and v2 
(as p• and v• of the water are known). This is done in the 
following manner. Equation (5) is rewritten as 

tan 2 ek = (pl/P2) 2 tan 2 0k -- (pllJ1/p2l)2) 2 sec 2 0k (6) 
to obtain an equation which is linear in the variables (p•/ 
p2) 2 and (PlVl/p21)2) 2. If N> 2, a least-square solution can 
be used to recover these variables and hence,o 2 and v2 can be 
obtained. 

In practice, two limitations of Eq. (5) should be ad- 
dressed. The first is that this expression is strictly true only 
for plane waves, and hence it is applicable only if the water 
bottom is many wavelengths away from the source. The sec- 
ond requirement is that the reflection interface be a liquid- 
liquid interface. Although this latter limitation seems severe 
in hard ocean bottom environments, the examples in Arons 
and Yennie •5 show that expression (5) is still an acceptable 
approximation. 

In the analysis of the present data we have limited our 
attention to the four larger amplitude events in the second 
group of arrivals (the water column multiples or second bot- 
tom bounce arrivals), seen in Fig. 1 between times 1.3 and 
3.3 s, and offsets 15 and 38 km. These arrivals were chosen 
because of their good signal-to-noise ratio. On the basis of 
the time separations and polarities of these events, it was 
concluded that they corresponded to reflections from a sin- 
gle internal interface in the sediments, but with different wa- 
ter path combinations (see Fig. 10). This was tentatively 
presumed to be the same interface responsible for event 3 
used in the previous analyses. 

The angular dependence S(O) of the phase shift was 
estimated from this reflection data using the complex Kar- 
hunen-Loeve (CKL) transformation described in Appen- 
dix D. This analysis began by finding a suitable "reference," 
i.e., a farfield signature of a precritical signal for which there 
was no phase shift, in this case the first bottom bounce on the 
first offset trace. The phase differential between the refer- 

- S 

S - Source R - Receiver 

FIG. 10. Sketch of the longer ray paths of the four travel paths used in the 
phase-shift inversion. 
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TABLE III. Offset, angle of incidence 0, and phase angle (in rad) for the 
four reflections associated with the first multiple (see Fig. 1 ). The travel 
paths are illustrated in Fig. 10. All phases are relative to a precritical arrival. 
The phases have been halved because the multiple path has two reflections 
from the water bottom. 

First multiples 
Travel path number 

1 2 3 4 

x (km) 0 (rad) phase phase phase phase 

28.20 1.088 0.699 0.431 0.422 0.353 

30.40 1.118 1.109 0.902 1.000 1.130 

32.10 1.139 1.136 0.989 1.298 1.330 

34.10 1.161 1.373 1.316 1.490 1.466 

37.80 1.198 1.483 1.390 1.566 1.503 

ence and each of the postcritical signals was then determined 
as shown in Appendix D. These differential phases, summar- 
ized in Table III, constitute components of the angular de- 
pendence function S(0) required in the solution of Eq. (6). 

An example of this operation for the first of the reflec- 
tion events is shown in Fig. 11, where the data shown are 
taken from a 100-ms window enclosing the analyzed wave- 
form for the different offset traces. Shown are: (a) the refer- 
ence signal and six postcritical reflections (from offsets 25- 
38 km), (b) the envelopes of the analytic signals of the seven 
waveforms, and finally, (c) the reference and the six postcri- 
tical wavelets after phase rotation to the reference. 

Using straight ray travel paths through the water col- 
umn we have estimated the angles of incidence for each of 
the offsets present in the analyzed data sets (see Table III). 
Equation (6) was then solved, minimizing the square of the 
errors •;i (e• c -- e/ø) 2, where the superscripts C and O stand 
for "calculated" and "observed," respectively. The estimat- 
ed sound-speed and density ratios for the water bottom sedi- 
ments obtained from each of the analyzed data sets are given 
in Table IV. As well, Table IV contains estimates of v2 that 

o to 

1 

(a) 

TIME (sec0nds) 

o 

o o 

(b) 

o to 
o o 

o o 

(c) 

FIG. 11. (a) The precritical reference and six postcritical events picked 
from the first water bottom multiple. (b) The envelopes of the analytic 
traces of the events in (a). (c) The wavelets in (a) after phase rotation to 
the reference trace. 

TABLE IV. Density and sound-speed ratios ( P2/P • and v2/vl ) for the "sec- 
ond layer" (see the text) determined from inversion of the phases shown in 
Table III. Using the estimated sound-speed ratios and a sound speed for the 
"first layer" of 1.55 km/s, the sound speeds for the "second layer" were also 
estimated. 

First multiples 
Travel path number 

1 2 3 4 

Density ratio 1.23 1.17 1.00 1.12 
Sound-speed ratio 1.17 1.14 1.15 1.16 
Sound speed (km/s) 1.81 1.77 1.78 1.80 

were obtained by supplying a value for V l. Following the 
discussion of the sound-speed inversion results (Sec. V), and 
noting that the reflector horizon was tentatively identified as 
corresponding to event 3, the value of vl was set to 1.55 
km/s. 

Vii. DENSITY EXTREMAL BOUNDS 

When the sound speed v2 beneath the reflecting inter- 
face is known, it is possible to obtain upper bound estimates 
of the corresponding density. We begin by rewriting Eq. (6) 
as 

( ,O1/,O2)2 [tan 2 0k -- (Vl/V2) 2 sec 2 0k ] + ek = tan 2 ek, (7) 
where ek denotes the error associated with the k th observa- 
tion. 

Approximate upper bounds to the density can then be 
found by specifying v2 and using a linear programming 
scheme to minimize the objective function 

Pl• 2 
subject to the constraint equation (7). 

Using a sound-speed ratio v2/v• of 1.16, we have solved 
the system of equations minimizing both the sum of the abso- 
lute value of the errors and the quantity,o 1/,o2. The resultant 
upper bounds on the density ratios are summarized in Table 
V. 

Viii. SUMMARY 

Seismic data collected in the Alaskan Abyssal Plain has 
been analyzed to obtain estimates of some of the material 
properties of the shallow sea floor sediments. The first pro- 
cessing stage involved deconvolution of the bubble pulse by 
autoregressive extension of a limited portion of the Fourier 
spectrum of the data between the first two spectral notches 
caused by the bubble train. As the extension process does not 

TABLE V. Upper bounds on the density ratios ( p2/•O 1 ) for the "second 
layer" determined from inversion of the phases shown in Table III. The 
sound-speed ratio v2/vl was constrained to be 1.16. 

First multiples 
Travel path number 

1 2 3 4 

Density ratio 1.29 1.44 1.19 1.22 

1449 J. Acoust. Soc. Am., Vol. 79, No. 5, May 1986 Chapman eta/. ß Inversion of profiles in ocean sediments 1449 



see the bubble-notch periodicity, the bubble-pulse train is 
suppressed in the output seismogram. 

The water bottom reflection and the three immediately 
following events delineated in Fig. 5 were picked for onset 
time to produce time-offset ( T-- X) trajectories for each of 
the four events. Presuming that these arrivals were reflec- 
tions, linear regression of T 2 vs X 2 was performed to provide 
estimates of the vertical travel time at zero-offset (To) and of 
the rms sound speed ( Vrms ). These data were then inverted 
by two separate algorithms, a Backus-Gilbert approach and 
a linear-programming method, to produce time-sound- 
speed models, and after integration, depth-sound-speed 
models. The two models are in very good agreement, with an 
average sound-speed gradient over the first 100 rn of 2.7 
+0.2s -•. 

Considering the possibility that the third event (Fig. 5) 
corresponded to a set of continuously refracted arrivals rath- 
er than reflected arrivals, this event was reinterpreted by a 
different approach. The process included conversion of the 
T--X data of event 3 to p - r data, followed by a layer 
stripping procedure to effectively place the source and re- 
ceiver on the water bottom. The p -- r inversion of this re- 
duced data set produced a depth-sound-speed model (see 
Fig. 9) which was similar to that of the previous linear pro- 
gramming inversion, where all arrivals were presumed to be 
reflection events. 

The final results extracted from the data were the 

sound-speed and density ratios across an internal layer inter- 
face (tentatively identified as corresponding to event 3 ). The 
Complex Karthunen-Loeve transformation was used to esti- 
mate the phase shift versus offset function for a number of 
postcritical reflections. Solving for both the sound speed of 
the underlying layer (with the top layer sound speed set to 
1.5 km/s) and the density ratio across the interface resulted 
in estimated values of about 1.79 km?s and 1.14, respective- 
ly. Repeating the inversion with the sound-speed ratio fixed 
to be 1.16 resulted in an estimated upper bound on the den- 
sity ratio of about 1.29 across the interface. 

APPENDIX A: SPIKING DECONVOLUTION OF 
BANDLIMITED DATA 

The problem of obtaining a sparse-spike representation 
of bandlimited reflection seismograms has been treated re- 
cently by a number of authors in the geophysical literature. 
The basic assumptions underlying this operation are as fol- 
lows: 

(a) The earth model consists of a set of physically dis- 
tinct layers. 

(b) The reflectivity series corresponding to the layered 
earth model is sparse, that is, reflections are generally sepa- 
rated by a number of zeros. 

(c) The recorded seismogram is a reasonable bandlimit- 
ed representation of the earth response function. That is, the 
phase and amplitude distortions of the source are largely 
removed. 

The second assumption is expressed by 
N 

r(t) = • r,$(t--nA), (A1) 
n=l 

where N is the number of samples in the input seismogram, 
r, is the reflection coefficient at the nth sample, A is the 
sampling interval, and 8(t- nA ) represents a Di•ac delta 
function at time hA. The digital Fourier transform of a 
sparse reflectivity series r(t) consists of the sum of a number 
of sinusoids and is written as 

R (%) -- Rj = • r n exp . . , (A2) 
n=l x]V 

with j the index of o, the angular frequency, and n the time 
sampling index. 

It is obvious that each frequency in the series R (%) 
contains contributions from each of the spikes present in the 
reflectivity series. Hence, it is expected that under the as- 
sumptions specified previously, a full-band estimate of the 
reflectivity function r(t) can be obtained from an incomplete 
set of R (%)'s via the use of appropriate numerical tech- 
niques. The autoregressive technique which was used in this 
work will be described next. 

1. Autoregressive (AR) deconvolution 

As shown in Eq. (A2), the frequency representation of a 
sparse-spike series consists of a sum of a number of complex 
sinusoids each of which corresponds to a specific nonzero 
reflection coefficient. The problem of spectral extension can 
then be viewed as an autoregressive process where a complex 
prediction filter (fi•) is calculated and the available infor- 
mation is extrapolated by a convolution with this filter. The 
process is simply summarized by the following set of equa- 
tions. 

Let the forward AR prediction be given by 
p 

k=l 

and the reverse AR prediction by 
p 

k=l 

with p the order (length) of the prediction operator • } 
and * denoting the complex conjugate. We seek a prediction 
filter • such that the sum of the fo•ard and reverse predic- 
tion errors is minimized in a least-square sense. That is, the 
filter coe•cients are found through the minimization of 

e2 1 •+ v 2 N--p•= i a=l 

1 R•--••R•+• . + N+• 
Details of some of the approaches to the solution of this 
minimization problem are given in Burg, 1• Ulrych and Clay- 
ton, •: Ul•ch and Bishop, ls and Claerbout. 1• 

The order of the prediction filter is quite important to a 
successful spectral extension process. Since'one prediction 
coe•cient is required for the extrapolation of each sinusoid, 
the ideal order of the AR process should be equal to or larger 
than the number of layers NL in the model. However, for 
bandlimited real data, where only M < (N + 1 )/2 frequency 
obse•ations are given, the requirement p > NL cannot be 
met. Hence, in this case, the process will usually detect only 
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the larger reflectors in the model, thereby reconstructing 
only the information concerning the major features of the 
sought reflectivity model. Our experience to date with a 
large number of synthetic, as well as real, data examples has 
proven the process to be quite successful. However, in cases 
where the local geology cannot be approximated by a rela- 
tively small number of reflectors, the AR process will have a 
somewhat lower likelihood of success. 

APPENDIX B: STACKING TO INTERVAL SOUND-SPEED 
INVERSION 

Given a set of N stacking sound speeds V•, j = 1,...,N, 
with the corresponding errors 6 V•, and possibly point esti- 
mates of the sound speed of some time intervals tk, we would 
like to obtain an interval sound-speed model v(t) which sat- 
isfies the given observations to within the specified errors. 

Assuming that the given stacking sound speeds are a 
reasonable representation of the rms sound speeds, we write 

V• = 1 •o•V: 5- (t) at 

--• H(tj -- t)v2(t) dt, j= 1,...,N, (B1) 

with H the Heaviside step function and Tm representing the 
maximum two-way travel time in the desired model. 

The set of linear equations in v2(t) specified in (B 1 ) is 
underdetermined and admits infinitely many solutions. 
However, a specific model may be selected by minimizing a 
norm of the model subject to the data constraints. Two possi- 
ble norms are 

(I)l = Z [v:(t)] dt 
and (B2) 

•2= • [v2(t)] dt. 
Minimization of either (I) 1 or •2 will yield a minimum struc- 
ture sound-speed curve since the integrated derivative is as 
small as possible. Spurious structure on the final model is 
therefore avoided. 

Defining the model as m(t)=d/dt[v2(t)] and inte- 
grating Eq. (B 1 ) by parts yield a set of new equations which 
are linear in m (t). These are given by 

V• v2(O) = (tj - t)H( t• -- t)m(t)dt, j= 1 .... •V. 

(B3) 

Additionally, when point sound-speed constraints are avail- 
able (for example, from well-log information), it is possible 
to incorporate these into the solution. By integrating the 
model, the sound-speed value at time t• can be written as 

•o '• at o2(t) =/92(0) -•- Z [o2(t)] dt (B4) 
or 

02(t•c) -- 02(0) = m(t)H(t-- t) dt, 

(BS) 

Equations (B3) and (B5) are the final equations to be 
solved, where M and N are the number of point sound-speed 
constraints and stacking sound-speed picks, respectively. 

1. Minimization of the norm •a 

Minimization of •2 = œ m2(t) dt subject to the data 
constraints is carried out using standard Backus-Gilbert 
techniques. 

Letting e• and G• denote the jth observation and kernel, 
respectively, Eqs. (B3) and (B5) can then be rewritten as 

ej = Gj(t)m(t) dt, j= 1,...,N+ M. (B6) 

The constructed model will consist of a linear combination 
of the kernels G (t): 

N+m 

m(t)= • a,G,(t). (B7) 
i=1 

Substituting (B7) into (B6) and exchanging the order of 
summation and integration we have 

ej = Z (Jj(t)(Ji(t) dt ai, j= 1,...,N+M, 
i=1 

which in matrix notation is written as 

e = Fa. (B8) 

Consequently, the coefficients a necessary for the construc- 
tion of the smallest model are obtained from Eq. (B8) as 

a = F-le. (B9) 

These equations are solved using standard spectral ex- 
pansion techniques (Parker2ø). Importantly, the equations 
are not solved exactly so that the constructed model m (t) 
fits the observations to within the given observational errors. 
More details and some applications of this and other con- 
struction techniques, including those steps which pertain to 
noise considerations, are given in Parker, 2ø Oldenburg and 
Samson, 21 and Oldenburg et al. 22 

2. Minimization of the norm 

The minimization of •1 subject to the data constraints is 
solved using linear programming techniques. We introduce 
the partitioning scheme (0 = to,q,...,tL = T•, and parame- 
trize m(t) such that it is a constant mi, in the ith partition 
element. We then write Eq. (B6) as 

L 

ej = • Ajimi, j = 1,...,N + M, (B10) 
i=1 

where 

ft/ A = Gj(t) dt. 
--1 

The minimization of the objective function 
L 

Im, I 
i=1 

subject to the constraints in (B 10) yields the sought solu- 
tion. 
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3. Discussion of the constructed models 

The techniques discussed above solve for the model 
rn(t) = d/dt{v2(t)}, from which v(t) is easily recovered. 
Although both methods are solving for the minimum struc- 
ture model, there is a significant difference between the mod- 
els generated by minimizing (I)l and (I)2. 

Minimization of (I)2 yields a continuous interval sound- 
speed model v(t). This model is particularly suitable for 
cases where the true sound-speed profiles are smooth and 
obey a continuous depth to sound-speed relation. However, 
if the true local geology is well approximated by a set of 
layers, the continuous sound-speed model will tend to follow 
the low-frequency sound-speed structure. 

Minimization of (I)l yields a layered sound-speed model. 
This model resembles the one obtained by the Dix formula, 1ø 
however, the technique described here is considerably more 
stable, and allows convenient handling of observational er- 
rors and the incorporation of additional knowledge in the 
form of sound-speed bounds or point sound-speed con- 
straints. 

APPENDIX C: THE ESTIMATION OF INTERVAL SOUND 

SPEEDS FROM p - • TRAJECTORIES 

Many of the processing and interpretative operations 
that are carried out on seismic data are performed more sim- 
ply if the data are transformed into the p- r (intercept 
time-ray parameter) domain. For any of the reflection and 
refraction trajectories in the T- X (arrival time-offset) do- 
main (see Fig. C 1 ), the transformation would involve find- 
ing the slope of the tangent at all ( T, X) points to get the ray 
parameter p: 

dT 
p =• (C1) 

dX 

as well as finding the intercept time of the tangent line with 
the time axis: 

r = T(X) -- pX. ( C2 ) 

An example of the procedure is shown in Fig. C2. Applying 
this transformation to the data in Fig. C 1 (b) results in the 
p - r representation shown in Fig. C2 (b). 

Consider a plane wave propagating in a layered earth. 
As indicated in Fig. C3, the ray parameter p at any depth z is 
a constant equal to the sine of the propagation angle from 
vertical [ O(z) ] divided by the sound speed at that depth: 

p = sin O(z)/v(z). (C3) 

Also shown is the conservation of the value of p along any 
refraction path, which is simply the manifestation of Snell's 
law. 

The above gives the physical interpretation of the ray 
parameter p. As well, in Eq. (C2) the quantity T represents 
the total travel time of a ray (with ray parameter p) from the 
source to some arbitrary receiver location X. The quantity 
pX is the horizontal portion of T (see Fig. C3 ): 

tn ( p ) = • • sin0i=p•2di=pX. ß \vii i 

Similarly, the intercept time r is the vertical portion of T. 

(a) 

ß- Source 

A B • c 

c 

ß -Receivers 

(b) 

Pre-critical reflection ( A ) 

Refraction ( B ) 

Second reflection 
(A') 

Post-critical reflection 

(c) 

FIG. C1. Reflection and refraction arrivals from a single source measured 
in the T -- X domain. Ray paths are shown in (a) and the travel time curves 
are given in (b). 

1. Layer stripping 
The inversion of p -- r refraction data to obtain depth- 

sound-speed models (Garmany et al. •) presumes that both 
the source and receiver are on the surface of the layered 
earth. However, the layer stripping method of Shultz •3 al- 
•uw• u.c tu psa•c out,, mc •uu•c a.u receiver a• some arbi- 
trary depth z (see Fig. C4) using a very simple operation. 

For the sample ray path shown in Fig. C4 (a) (where the 
path below layer 1 can be either a reflected or refracted path) 
one would like to adjust the data so it will be as if the source 
and receiver are on horizon 1. This involves having the 
source at S• and the receiver at R l, as shown in Fig. C4(a). 
The new T and X values would be 

Tne w = Tol d -- t• -- t•, Xnew = Xo, - - 
(C4) 

where the values of Told and Xold are the travel time and 
offset, respectively, between S and R 0, and Tnew and Xnew 
are between Sl and R • [see Fig. C4(a) ]. The adjusted 
value would then be 

7'ne w =Tne w --pXnew 

=Tol d--(t• +t•)--p(Xol d--x•--x•) 

= ( Tol d -- pXol d ) -- (t • + t • ) -- p (x• + x• ) 

= ro,d -- (t• + t•) --p(x• +X•). (C5) 
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(a) X (a) 

Tau 

-- dT/dX 

,,,,.• Pd 

(b) p 

Pre-critical /• Post-critical 
reflect• reflection X,..... Refraction ( point ) 

n 

FIG. C2. (a) Tangent plane to T- X trajectory to determine the slope p 
and intercept time r. (b) The p - r representation of the data shown in Fig. 
C1. 

The second half of the right-hand side in Eq. (C5) is simply 
the intercept time corresponding to the reflection from hori- 
zon 1 (for a source at $ and a receiver at R ). 

r] = t• d-t• d-p(x• d-x•). 
Thus to remove the effects of the travel path in layer 1 re- 

Zl 

Z 2 

FIG. C3. Snell's law and the physical significance of œ. 

4 X 2 

i i i i i 

i I i i i 

• m / a m b V• • • R • 
i i 

S i ,, laS, er I 
I 

a • , t b 
ti I i ! 

I I 

horizon I R• datum 
V2 

(b) 

econd reflection 
after stripping 

FIG. C4. (a) Travel paths involved in the layer-stripping method. (b) The 
œ - r data of Fig. C2(b) after stripping of the first layer. 

quires only that the values of r corresponding to this path be 
subtracted from the values of r of the deeper horizons, for all 
values of œ [ see Fig. C4 (b) ]. 

This stripping operation can be continued progressively 
through the layers to move the new datum successively deep- 
er. 

2. p - • inversion of travel time data 

It is now appropriate to expand on the Introduction to 
outline the inversion procedure used here. Consider a one- 
dimensional earth in which the sound speed v(z) is a mono- 
tonically increasing function of depth. A plane wave travel- 
ing in such a medium will be refracted according to Snell's 
law: 

sin ( i )/v (z) = p = const. 

If v(z)is a monotonically increasing function of z then the 
ray follows a path like that shown in Fig. C5. 

X V0 = Vmin 

Umax -- 1/Vmi n 

z Vmax 

I Zp Umin = 1/Vma x 
FIG. C5. Turning ray path considered for œ - r inversion. 
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The maximum penetration of a ray launched with an 
angle io is given by zp. At the turning point (or bottoming 
depth) z v, the ray is moving horizontally so i = rr/2 and 

1/v(z) =p. (C6) 

3. Derivation of the travel time curves 

Given a sound speed v(z) we want to find the time it 
takes for the energy to arrive at a distance x from the source. 
The travel time equations are easily derived (Grant and 
West 23). The basic equations are 

t(p) = 2 v(1 --p202)1/2' 

••P (c7) x(p) = 2 po dz 
( 1 --/0202) 1/2 ' 

dt 1 

dx V(Zp) 

It is helpful to think in terms of reciprocal sound speed 
u(z) - 1/v(z). The quantity u(z) is also referred to as the 
"slowness." In terms of reciprocal sound speed Eqs. (C7) 
become 

/•2 

t(p) = 2 (u 2 __/02)1/2 
(C8) 

x(p) =2 P 
(U 2 __p2) 1/2 

By rearranging, we obtain 

= •Zp( --/02 ) q_ (u2_p2)l/2.)dz t(p) 2 (u 2 1/2 p2 

- •• ) -px(p) + 2 (u 2 _p2 

Therefore, 

•• -- ) dz: (C9) r(p) = t(p) =px(p) = 2 (u2 p2 1/2 

Equation (C9) is the fundamental equation of interest. It 
expresses the relationship between the delay time r and the 
quantities u(z) and the bottoming depth z as a function of 
ray parameter p. Given a data set (ti, Pi ) i = 1, N, we would 
like to invert Eq. (C9) to find u(z) and hence v(z). 

4. The linear transformation 

Let us consider Eq. (C9). We observe that if values of r 
at certain values of p are known, it is possible to invert those 
equations to obtain u (z) and hence v (z). We note, however, 
that Eq. (C9) is nonlinear and hence a model u (z) could 
only be found through iteration. This is undesirable if it can 
be avoided. 

Garmany et al. 12 showed how Eq. (C9) could be trans- 
formed into a linear equation, with the model the derivative 
of the bottoming depth with respect to the slowness. 

It is assumed that there are no low sound-speed zones, 
that is, v(z) is a nondecreasing function of z. Let z = z(u). 
Then, 

At the surface (z = 0), u =/'/max' At the bottoming depth 
(Z = Zp ), II = Umi n : 1/Vma x = p. Therefore, Eq. (C9) be- 
comes 

r(p) = 2 (u 2_/o2)1/2 dJ du. 
max 

(ClO) 

5. Normalization of the equations 

It is convenient to normalize the equations by a scale 
factor u (equal to the reciprocal of the surface sound speed). 
When both u and p are scaled by Umax Eq. (C 10) is written 
as 

7-(p) = 2Uma x ( ) du. ( C 11 ) 

The function z(u) is a monotonically decreasing function of 
u and has the property that z( 1 ) = 0. [Since v(z) is mono- 
tonically increasing, dv/dz > 0 and hence dz/du < O. ] 

Let rn (u) = -- dz ( u )/du be the new function to be de- 
termined. The final set of equations are 

7-(p) = 2Uma x m(u)(u 2 _p2)1/2 du, m(u)•>O, 

(C12) 

dz(u•) = _ re(u), z(u) = fl u (dz(•')) d•'. du \ d•' 
The solution to the set of Eqs. (C 12) is easily effected 

through linear programming. A partition for u is introduced 
on the region [ Umin, 1 ]. Within each partition element the 
model rn (u) is assumed to be constant. The linear program- 
ming solution finds that set of m's such that 

6 = • m (C13) 
i=1 

is minimized subject to the data constraints 

r• -- tS• < • m,a,. i < r• + (5.•, j = 1, .... N, 
i=! 

where r i = 7-( p• ), •5• is the estimated error in r• and 

aU = 2Uma x J (U 2 __d ) 1/2 MU ui- 1 

(C14) 

is the integral of the jth kernel function over the ith partition 
element. 

12- 

16- 

0.2 014 ' 0•.6 ' 018 ' 1.0 
P 

FIG. C6. The p -- r values for the synthetic model v(z) -- (2000 + 140z) 
m/s. 
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FIG. C7. The sound speed recovered from inversion of the data shown in 
Fig. C5, superimposed on the true sound-speed model. 

The maximum number of nonzero values ofmi obtained 
from the linear programming solution will be N [ the number 
of data in Eq. (C 14) ]. 

Having found m (u), the next step is to compute z ( u ): 

f•U (dz(•)) d•. (C15) z(u)= \ d• 
The scale is now expanded (the normalization is undone) 
and v(z) is recovered from u(z). 

We note that zeros in the initial solution require that dz/ 
du = 0 over a range of u values. This requires that the sound 
speed changes but that z does not. Consequently, solution 
elements rn = 0 correspond to sound-speed jumps in the 
earth. 

The method outlined above is ideally suited to finding 
sound-speed models corresponding to a layered earth, but to 
illustrate that the method works well when the true sound 

speed is a linearly increasing function of depth, we present 
the following example. Consider a true sound speed 
v(z) = 2.0 + 0.14z km/s. The p- •- values are shown in 
Fig. C6. The sound speed recovered from the p -- •- inver- 
sion is shown in Fig. C7. Superposed upon that Fig. C7 is the 
true sound speed. 

APPENDIX D: AN OVERVIEW OF THE KARHUNEN- 
LOEVE TRANSFORMATION 

As pointed out in Ulrych et al., 24 there are many ways in 
which the KL transformation can be derived. The work of 

Kramer and Mathews 25 is, however, very straightforward 
and insightful. We shall first present the essence of their pa- 
per, and then show its extension to complex signals. 

Given a set of n real signals e• (t) and a ( m X n ) transfor- 
mation matrix A with elements Ai•, Kramer and Mathews 
define a set of rotated signals 

xi(t) = • Ai•e•(t), i= 1,...,m, m•<n. (D1) 
Let B be a (n X m ) matrix which generates new signals: 

m 

e•.(t)- • B,•x•(t), i-- 1,...,n. (D2) 

If•i (t) is to be a good representation of the ith original sig- 
nal, then the global misfit between the original and teton- 
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structed signals, given by 

•(m) = • ; ei(t)-•i(t)2dt (D3) i=1 

must be acceptably small. For any m •<n, Kramer and Math- 
ews 25 showed that the matrices which minimized (D 3 ) were 
A = R r and B = R. R is that orthogonal matrix which dia- 
gonalizes the inner product matrix F; the elements of F are 

F•i =; ei(t)ei(t) dt-- (e•, e• ). (D4) 
F is symmetric and positive semidefinite, and hence is de- 
composable. F = RAR r, where A = diag(A1,A2 ..... A.) and 
the columns of R contain the normalized eigenvectors r, 
where F.r• = A.rs. When A = R r, the rotated signals xs (t) 
form an n-dimensional subspace of a Hilbert space, and with 
these basis elements, the truncation error in Eq. (D3) is 

4(m) = • A,. (D5) 
i=m+l 

If the eigenvalues are arranged in descending order it follows 
that the first basis function can be used to reconstruct more 

of the total signal energy than any other basis function. For 
this reason, it is called the first principal component. Simi- 
larly, the second basis function will sometimes be referred to 
as the second principal component, etc. 

The first principal component has an important charac- 
teristic. If e•(t) = c•s(t), where ci are real constants, and 
s(t) is a given signal, then the first principal component will 
be 

x•(t) = s(t), (D6) 

that is, the first principal component will be a scaled version 
of the signal s (t) and the complete set of input signal vectors 
e• (t) can be reconstructed from this basis vector and an ap- 
propriate set of weights. The remaining basis vectors [x• (t), 
i- 2,...,n] will be zero; they are not needed in the recon- 
struction. 

These important characteristics of the KL transforma- 
tion enumerated by Kramer and Mathews 25 for real signals 
carry over directly to the case when complex signals are 
used. For complex signals though, the inner product matrix 
is Hermitian and positive semidefinite and hence a unitary 
matrix is required for diagonalization. The eigenvalues will 
still be real, but the eigenvectors are complex. Nevertheless, 
the truncation error in Eq. (D3) is still given by Eq. (D5). 
Importantly, if e• (t) = c•s (t), where the c• are complex con- 
stants, then the first principal component will be 

x•(t) = [c•l 2 s(t). (D7) 

Equation (D7) shows that complex signals which differ only 
by a complex scale factor can be represented by a single prin- 
cipal component. 

As an illustration, we consider the following simple ex- 
ample. Let el(t ) =s(t) and e2(t) =exp{ -- ie)s(t). Let 
Ilsll = - cs,s*) and Fi• -- (ei, e•), where ß denotes the com- 
plex conjugate. Thus 

F = ,.s,.2 ( , exp•i6)) exp0e) ' 
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The eigenvalues of F are )[1 = 211sll 0. The unitary 
matrix is 

1 ( 1 --exp{--i6}) U=•- exp{ie} 1 ' (D8) 
The first basis function is x•(t)--u•$e•(t)+ u2•'•e2(t ) 
= x/•s(t), where ui• are the elements of the first column of U 

and •' denotes complex conjugate transpose. 
The importance of these results to recorded seismo- 

grams is apparent when phase shifts of a source signal are 
considered. If w(t) is the initial wavelet, a wavelet phase 
shifted by an amount e is given by 

w(t;e) = cos ew(t) + sin e•(t), 

where • (t) = HI w (t) ] is the Hilbert transform (Aki and 
Richards 9) of the initial wavelet. In such cases, it is expedi- 
ent to consider the analytic signal (e.g., Bracewell26; Levy 
and Oldenburg 27)' 

•(t) = w(t) -- i•(t). 

The phase-shifted signal can be written as 

w(t;e) = Re[ •(t) exp{ie} ]. 
Let us consider a signal el (t) = w (t) and another signal 

e2(t) = w(t;E). The corresponding analytic signals are 

•'l(t) = •(t), •'2(t) = •(t) exp{ie} 
and hence the signals are like those considered in the numeri- 
cal example. Application of the complex KL (CKL) trans- 
formation will produce a first principal component equal to 
•(t). Moreover, Eq. (D8) shows that the phase rotation in 
the second signal is recoverable directly from the eigenvector 
associated with the first principal component. That is, 

e = tan- 1 ( U21 ), 
In this paper, the CKL transformation is applied to ana- 

lytic seismograms. The ratio of the energy in the first princi- 
pal component to the misfit energy using only one eigenval- 
ue; 

1, = Xl/4(1), 

is used as a measure of correlation between the original set of 
signals. 1'>> 1 implies a good correlation, whereas 1'•O( 1 ) 
implies a poor correlation. 

When 2/>> 1, each of the original signals may be ex- 
pressed (to within a small acceptable error) as a scaled and 
phase-shifted version of the first principal component. Phase 
shifts in the various signals can be estimated from the eigen- 
vector associated with A •. 

The properties outlined above suggest that the CKL al- 
gorithm can be very useful in investigating those physical 
phenomena that introduce phase shifts, which to a first order 
can be approximated by a constant. If the applicability of 
this model can be established, then estimation of the phases 
involved can yield useful information about earth properties. 
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