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geophysical topics such as deghosting (a formal description of 
methods like deconvolution or inversion in the context of ML 
can be found, for example in: Calderón-Macías et al., 1997; 
Russell, 2019).

An analogy to de-ghosting procedures
Consider a single seismic trace from a marine survey, and 
assume that we know that the underlying source generates a 
band-limited minimum phase wavelet characteristic of an airgun 
array. This minimum phase signal then becomes modified by 
the source and receiver ghosts (reflections of the sea surface) 
to produce the source signature present in the recorded data. 
These ghosts are delayed opposite polarity versions of the 
initial source, and knowledge of the source and receiver depths 
make them predictable in terms of the notches in the spectrum 

Introduction
I first attended a talk on what was then billed as artificial 
intelligence, specifically the application of neural networks in 
geophysics, over 20 year ago. I understood nothing. The termi-
nology was totally alien, and I had no conceptual links to relate 
what the speaker was saying to what I already knew. In terms of 
the science, he was essentially speaking a ‘foreign language’.

The application of artificial intelligence, deep learning, and 
machine learning (ML) have since become prevalent, and are 
fast becoming omnipresent in all aspects of science that involve 
handling large data volumes of any sort.

In order to try to gain a better grasp of the underlying 
principle of machine learning, I’ll try to relate the ideas and ter-
minology used in ML to concepts and terms that will already be 
familiar to geophysicists with a basic understanding of common 
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Figure 1 Left top: the bubble expansion from firing 
the airgun and subsequent bubble contraction forms 
a minimum phase pulse; bottom: for a source (yellow 
star) and receiver (grey triangle) below the sea 
surface, we have a) the primary reflection (green), 
b) the source-side ghost (red), c) the receiver-side 
ghost (blue) and d) the double surface bounce ghost 
(black). As the receiver is usually deeper than the 
source, the receiver ghost arrives slightly after the 
source ghost, but the two pulses usually combine to 
form a large reverse-polarity peak, which arrives at 
the water-depth travel time (as the increase in travel 
time due to the ghost travel path compensates for the 
reduction in travel time due to the source and receiver 
being below the sea surface). Right: for a source at 
7.5-m depth (10ms) and receiver at 9 m (12ms), an 
input waveform (top) is modified to create the typical 
marine wavelet (bottom).
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Such parameter optimization constitutes the first step in a 
machine learning procedure.

After several iterations of such least-squares minimization, 
we should have an optimal set of parameters for the deghosting 
procedure to correct for the effect of the ghosts on these data. 
Furthermore, we could extend the procedure to use input traces 
from a suite of similar surveys, all of the same known airgun 
configuration, source and receiver depth, thus having the same 
underlying wavelet shape, and thereby obtain a more optimal set 
of parameters. These parameters will now be more independent 
of the undesired influence of slight variations in source or 
receiver depths, and swell and other noise, or of the Earth’s 
reflectivity. The cost function will now be very small, as the 
deghosted wavelet extracted from field data with the optimized 
parameters should very closely resemble the modelled library 
signature. Least squares minimization essentially back-prop-
agates the observed error (as measured by the cost function) 
through the various steps in the processing sequence, by asking: 
what parameter changes in each of the preceding steps will 
result in a reduced cost function?

These steps of automated parameter optimization can now 
be extended into a ‘learning’ phase to more fully automate and 
generalize the deghosting procedure for data with any source 
and receiver depths, by proceeding as follows. Take field data 
from a wide range of surveys and group them into classes for 
a given combination of say 40 source and 40 receiver depths, 
for tow depths of, for example, between 3 m to 22.5 m in steps 
of 0.5 m (thus giving 1600 groups), and for each of these 1600 
groups create a modelled library signature. Next repeat the 
least-squares parameter optimization procedure for each of 
the 1600 groups of source and receiver depth combinations. In 
terms of ML terminology, this extensive task of parameter opti-
mization for each of the 1600 groups is referred to as ‘training’ 
and the underlying data used in this process as the ‘training 
set’. For whatever deghosting procedure we use, we now have a 
library of least-squares optimized parameters for data acquired 
with many source and receiver depths.

Least-squares cost-function minimization is a widely used 
technique for parameter optimization, and further details on this 
item can be found for example in Shewchuck (1994), Schleicher 
(2018), and Jones et al., (2019). It can be noted that the task 
we undertake (from the perspective of the maths) constitutes 
attempting to find the inverse of a large matrix system (the Hes-
sian). Consequently, the heart of a ML system is the use of linear 
algebra to address a highly non-linear problem in an approximate 
linearized iterative way.

Using the optimized parameters
Now turn the problem around: given some new and hitherto 
unseen marine seismic data, we want to determine which deg-
hosting filter is most appropriate for it by comparing it to the 1600 
groups that we previously analysed. Rather than trying to extract 
a deghosted broadband wavelet from the new data by designing 
a bespoke optimized processing scheme, instead we simply apply 
the aforementioned deghosting procedure 1600 times with each 
of the previously determined optimized parameters for each of 
the 1600 groups. This is a very quick procedure, as we already 

of the source signature. However, this delay varies with angle 
of incidence of the raypaths, i.e. with offset between source and 
receiver. Figure 1 shows a cartoon of this process: as well as 
the sea surface ghost reflections, there is also the effect of the 
contraction of the bubble pulse (and later delayed repetitions 
of the oscillating bubble). In simple convolutional theory, we 
assert that the measured (observed) trace is composed of the 
Earth’s (approximately white) reflectivity series, convolved 
with the band-limited minimum phase source wavelet, the 
source-side and receiver-side ghost responses, the receiver 
instrument response, and finally then all damped with a time 
and frequency varying amplitude decay factor (made up of 
a divergence component and various attenuative absorption 
components), plus noise.

In contemporary data processing and imaging workflows, 
we often desire to suppress the source and receiver ghosts so 
as to obtain data with a broader bandwidth and thereby provide 
higher-resolution images (Zhou et al., 2012). We typically 
address this problem by designing and applying a deghosting 
operator (and the nature of this procedure can vary depending 
on the water depth: if the water is shallow then the direct wave 
obscures the seabed reflection events and restricts use of some 
methods).

The deghosting operator design could perhaps involve a 3D 
transform and migration-like operation to map all related notch-
es to the same spectral location in order to minimize the notch 
dependency on angle of incidence Then for specified source and 
receiver depths and sea-surface reflection coefficients, a deg-
hosting operator would be designed to try to minimize the effect 
of the notches in the amplitude and phase spectra. The operators 
would be specified with certain design parameters, and the field 
data may be preconditioned with some form of amplitude decay 
compensation and noise suppression. The operators may also 
be smoothed laterally so as to promote stability in the face of 
rapidly varying sea states.

Now consider trying to automate this approach for any 
marine seismic data. First, take a modelled signature for an 
airgun array at source and receiver depths representative of 
this survey without any ghosts included (the desired output), 
and, after suitable normalization and alignment, subtract this 
from the data samples of the deghosted field data wavelet 
(the actual output). Next, calculate the sum-of-squares of the 
sample-by-sample differences to create a single number char-
acterizing the overall difference between the desired and actual 
output (and call this number the ‘cost function’). In the ideal 
case the cost function will be small, as the deghosted wavelet 
will closely resemble the modelled signature.

The estimate could be refined by setting-up a least-squares 
loop to minimize the cost function by adjusting the parameters 
of the deghosting procedure (e.g. the reflection coefficients, 
true source and receiver depths, operator length, etc.). There are 
perhaps a dozen parameters in the deghosting workflow and con-
sequently, in routine production testing, it is totally impractical 
to manually investigate the interplay of all possible combinations 
of these parameters even for a limited range of their values. 
However, in a least-squares multivariate analysis procedure this 
is a relatively straightforward task (albeit compute intensive).
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each of the classes we train for (although various approximate 
solutions can be found more cost-effectively).

The training itself will generally be extremely user intensive 
as someone has to select, ‘label’, and input the training data. 
However, this procedure can be streamlined by using neural 
networks (NN) themselves to generate additional input datasets 
(and if performed without user intervention, this is said to be 
‘unsupervised’). Each of these computed (synthetic) training 
datasets would be constructed so as to have similar statistical 
behaviour to the real data sets. Then, using pairs of neural 
networks, each would feed the other one of its created synthetic 
datasets (in addition to the original real datasets), giving rise to 
an ‘augmented’ NN that might be of use when working with 
limited numbers of input field data sets. In the case where one 
network ‘generates’ the input and one network ‘discriminates’ 
against poor solutions based on the cost function, this approach 
constitutes an ‘adversarial’ competition with one NN testing the 
other, and is referred to as a ‘generative adversarial network’ 
(GAN).

An inherent limitation for any ML procedure is the degree 
of generality of the training procedure: can the training be 
sufficiently universally diagnostic, such that any new example 
can be correctly classified? It would be of little use if we 
have to retrain the network for every single problem that we 
encountered.

ML for other geophysical tasks.
Another view of the procedure is to think of ML as trying to 
identify the most important and diagnostic aspects of a data-set, 
and then boiling these down into the smallest possible set of 
descriptors that adequately capture the vast majority of the infor-
mation contained in the data (in terms of the mathematics, this is 
searching for the optimal and most condensed basis functions to 
represent the data). These descriptors can then be used to assess 
if a given new data-set resembles some target class, and thereby 
categorize a new hitherto unseen object as belonging or not 
belonging to a given class.

Let us say that we want to train a NN to interpolate missing 
traces from shot gathers: take a shot gather and replace several 
traces with blank (zero-value) traces. Now run the NN to mini-
mize the misfit between the original and decimated gathers, and 
do this for thousands of input gathers with very many permuta-
tions of zeroed-out traces. At the end of this training procedure, 
the NN will have determined an optimum way of filling-in the 
gaps between the live traces. This NN can then be applied to 
new, hitherto unseen shot gathers so as to interpolate (reconstruct) 
missing traces (with some limiting assumptions, such as perhaps 
the maximum offset, trace length, and sample rate being the same, 
etc.). With a more conventional approach, this interpolation/
reconstruction might have been performed using a parabolic 
Radon transform following normal-moveout correction (and in 
this case, the basis functions would have been the Radon p-traces). 
A similar approach can be taken to extrapolate near-traces back to 
zero offset to facilitate the workings of SRME (Verschuur, 2020). 
It is important and instructive to note that when we perform a 
parabolic Radon transform to decompose a moveout corrected 
shot gather; we are basing this choice of basis vectors on the 

have all of the processing parameters from the ‘training’ steps. 
We can then compute the cost function for all 1600 of these 
output deghosted wavelets (i.e. sum-squares difference between 
the 1600 modelled signatures and the deghosted wavelet estimate 
output for the new data with each of the 1600 parameter sets). 
Finally, we classify the new data by saying that it is most likely 
to belong to the source and receiver depth group that gave the 
smallest cost-function. This final step is the classification of the 
output into the desired descriptive classes.

It should be noted that these classification results are not 
absolute, nor guaranteed to be correct; it is perhaps better to 
think of the cost function as representing the probability that the 
new trace belongs to a certain class. If we input a trace of data 
from the soundtrack off a music album, the classification would 
still give us an answer in terms of the likely source and receiver 
depth class and corresponding deghosting filter, but this time 
the answer would clearly be meaningless. Or, if we provided 
marine airgun data with a receiver depth of 30 m (i.e. outside 
the range of the training), it would incorrectly attribute this new 
trace to having a probable receiver depth between 3 and 22.5 m. 
However, for both these examples of misclassification, the 
cost functions would be relatively large (i.e. the probability of 
belonging to one of our 1600 classes would be small).

Terminology
As noted earlier, the terminology used in ML can be opaque, so 
in this section I’ll outline some of the common terms employed 
in the ML literature and relate them to terminology more familiar 
to geoscientists.

Each individual input sample from the seismic data being 
inputted into the system is referred to as a ‘neurone’, as it can 
influence the outcome (Rumelhart et al., 1986). The processing 
sequence designed to estimate the underlying deghosting 
operator and effectively remove the ghost response is referred 
to as the ‘network’. Each step within that network is referred 
to as a ‘layer’. If we packaged this processing sequence as a 
standalone ‘black box’ workflow, we could think of its inner 
working as comprising ‘hidden layers’. Some of those internal 
processes (layers) were designed to reduce the number of data 
samples whilst retaining information content (e.g. smoothing 
and decimation); such steps are referred to as ‘down-sampling’. 
Some steps, such as scaling or normalization, could be designed 
to emphasize specific aspects of the data, and these are referred 
to as ‘activation functions’, a common one being to take only 
positive values (‘rectify’) and then to normalize the data with, 
say, a linear ramp (known as ReLU: rectified linear unit), or 
perhaps a sigmoidal function. As noted earlier, the procedure of 
iteratively minimizing the cost-function to optimize all the pro-
cessing parameters in the network is referred to as the ‘training’ 
of the network. A more extensive list of the terms commonly 
used in ML can be found, for example, on the Wikipedia page 
cited in the references.

As can be imagined, the key to getting a useful and usable 
neural network, is to have an understanding of what individual 
processing steps (the ‘hidden layers’) will best help us to achieve 
our objectives. Then for very large datasets we ‘simply’ need an 
enormous computer to estimate the inverse of the Hessian for 
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boundary to the manually picked interpretation. This processing 
flow is essentially intended and designed to ‘simplify and 
classify’ the input seismic data based on the supplied prior 
interpretations. This will be the training stage for building the 
neural network. The output will be a set of optimized processing 
parameters for shaping and matching data to their corresponding 
known manual interpretations based on various criteria which 
will be characterised by the ML optimization procedure.

Now, we move on to the inverse problem: take a new 2D 
image segment from a 3D image volume and ask if there is a salt 
boundary present in this segment of the data, and if so, where. 
The network assesses whether or not we have salt by applying 
the neural network processing flow with the previously derived 
optimized (trained) parameters, and if the cost function for the 
new 2D image segment is very low, we decide that salt is indeed 
present, and where in the 2D image it is located. Following this 
procedure, we would label every pixel in the new small image 
segment as being outside salt or within salt. Moving the small 
2D analysis window around a new previously unseen 3D image 
could then classify the volume in terms of image pixels being 
outside of, or within, the salt body e.g. TGS’s Kaggle compe-
tition (Kaggle, 2019; Kainkaryam et al., 2019; Milosavljevic, 
2020).

underlying physics of the moveout behaviour of the data (there is 
some ‘theory’ behind what we did). However, for ML, there is no 
underlying physical theory governing what the basis vectors turn 
out to be; the NN simply finds some descriptor that minimized the 
overall error in the network.

In recent years several other ML applications have appeared 
in the geophysical literature, for example: first-break picking 
(Sliz et al., 2021) and noise suppression (Martin et al., 2015; 
Klochikhina et al., 2020; Walpole et al., 2020). Figure 2 shows 
a common receiver gather from an ocean bottom node survey, 
where ML has been used to pick the first arrivals. A 50 m * 50 m 
shot ‘carpet’ was acquired over 3000 nodes with a 500 m * 500 m 
node spacing. Manual first-break picking was performed on 1% 
of the data so as to ‘label’ the first breaks, and subsequent use 
of ML enabled picking of the first breaks on 650 million traces 
in a few hours. These picks were used as a guide for refraction 
waveform inversion.

Next, I’ll consider a more challenging problem, namely 
identifying a salt boundary in a migrated image. Starting with 
several thousand small 2D image segments showing a top-salt 
(and/or base-salt) boundary and the previously manually inter-
preted (labelled) position of this boundary.We want to derive 
a processing flow to match the pixels in the 2D image at the 

Figure 2 A common receiver gather from long offset 
ocean bottom node data. The yellow line indicates 
the ML picks of the first arrivals for use in waveform 
inversion (courtesy of Yannick Cobo, ION).

Figure 3 Schematic workflow cartoon for possible steps in isolating and labelling a salt body: a) input image; b) threshold values to remove small numbers (‘noise’); c) 
compute derivative of image b) in the vertical direction; d) compute derivative of image b) in the horizontal direction; e) add the derivatives from various directions to identify 
all edges; f) classify the regions ‘inside’ and ‘outside’ the object.
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values inside or outside the shape have the characteristics of 
say ‘salt’ or ‘not-salt’. In the geophysical context, we note that 
seismic data samples near the top of a salt body tend to be char-
acterized by a lower-frequency waveform at the boundary and 
generally, for allochthonous salt bodies, also have little layered 
structure within the body. Conversely, the material outside such 
salt more often has a layered structure.

Yet another way of comparing subsets of pixels within the 
small 2D image segment would be to take a small ‘pilot’ image 
(representing what we are looking for: in this case an edge) and 
to convolve this small pilot image step-by-step with all pixels 
in the larger 2D image segment. This will enable us to obtain a 
correlation coefficient at every point in the image. If the small 
pilot image resembles a part of the 2D image segment, then 
the convolution will produce a large value of the correlation 
coefficient. Figure 4a shows the small pilot image (the black 
rectangle positioned near the top-left corner of the 2D image 
segment). The pilot image is moved pixel-by-pixel towards the 
right (Figure 4b), and the convolution repeated at each location. 
At the location in Figure 4c, the pilot coincides with some 
structure in the 2D image and a maximum in the convolution 
will occur. This convolutional procedure would then be repeated 

In a more general sense, what we want to do is recognise an 
edge: this could be the top edge of a salt body, or in the context 
of handwriting recognition the edge of a number or letter, or the 
edge of a cat’s face in a photo. An edge constitutes a discontinu-
ity with respect to some background, so a first step could be to 
enhance and detect the location of changes. Figure 3a represents 
a 2D image segment, with background noise (representing the 
uninteresting bits) and a black rectangle representing the object 
we want to identify. First, we set a threshold on the data to zero 
out any small values (Figure 3b). We then compute the difference 
between two successive samples (a derivative) in the vertical 
direction so as to emphasize a sudden change in values – the 
vertical derivative emphasizes (detects) the top and bottom of the 
rectangle. Perhaps we then rectify the result to make all values 
positive, and also apply a non-linear scaling to the remaining 
numbers to force them to take on values between one and ten 
(Figure 3c). The derivative could be performed in other directions 
to help identify other edges: Figure 3d is the rectified lateral 
derivative which detects the sides of the rectangle. Performing the 
derivative for several directions and summing the results could 
help detect to edges with various dips (Figure 3e). In addition to 
finding the edges of the shape, we want to ascertain if numerical 

Figure 4 Schematic workflow cartoon for detecting an interface via comparison with a pilot ‘template’ by correlating the pilot with all parts of the 2D image segment. In the 
top row, the pilot pixel template (black rectangle) slides to the right in small steps: at the far right (c) the pilot template sits on the interface and will give a high numerical 
value in the convolution. The lower row shows one of many dipping pixel sets which likewise are slid in small steps to the right, overlapping the interface at location (e). Once 
the pilot has been moved around all locations on the 2D image segment, the locations of the correlation maxima will outline the interface location.

Figure 5 Small preSDM image segment from a large 
3D marine survey showing ML picking of the top salt 
surface indicated by the red line (courtesy of Xin 
Huang, ION).
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Jacobian), and these equations are used to update the parameters 
after each iteration of forward modelling until the ‘cost function’ 
(sum of squares of the residual) is acceptably reduced. Conven-
tionally, we do not invert for the general processing parameters 
(this is usually left to a user’s experience and accepted best 
practice): hence in conventional FWI, the parameters are simply 
the values of velocity (etc.) in the cells of the earth model.

This description can be recast as an ML problem. In ML 
terminology, these iterations constitute the training: the training 
is performed using many thousands of field shot records, and 
the optimized parameters make up the best-estimate velocity 
model for the survey (and could in principle also include the 
other more general processing parameters).

The following idea is not what we ever actually do in prac-
tice, but is meant to be an indication of what could be achieved 
via ML. Assume that we had some new data that were not used 
in the training, but were missing their source and receiver coor-
dinates, and in addition we were not sure if these data were even 
acquired over the same geological area. For an individual shot 
record selected from these new data, we could use our trained 
network to undertake forward modelling iterating over all 
possible source and receiver positions within the area where the 
training had occurred. If an acceptably small cost function was 
obtained, then this would imply that the new shot was recorded 
with the source and receiver locations corresponding to this 
minimum cost function. Repeating this procedure for all shot 
records from the new survey, if we obtained acceptably small 
cost functions, we could conclude that these new, previously 
unseen data were indeed acquired over the same geological 
area, and also what their likely source and receiver positions  
were.

Conversely, if the data came from a different region of the 
Earth, then processing them with the above-mentioned ML 
workflow would give rise to unacceptably large residuals and 
cost function and this would be a clear indication that the new 
data were not from the geological area used in the training.

If our budget was large enough, we could reproduce the 
ML-FWI training exercise using data from all over the world. 
Then, when presented with a new, hitherto unseen, dataset, 
we could run forward modelling with all the different sets of 
optimized parameters, and select the parameter set that gave the 
smallest cost function. This would give an indication of what 
possible earth model gave rise to these new data, as the new data 
was similar to one of the training sets. This latter observation 
could be used to estimate a more generic low wavenumber 
model pertaining to the new dataset which could then be used 
as a starting point for a full model estimation procedure for the 
new input data (e.g. Araya-Polo et al., 2019).

It can be inferred from the above descriptions that the 
training is perhaps the most important aspect of the ML process, 
and it would be totally impractical to apply ML using seismic 
data from every region on the planet. However, although it may 
be impractical to use ML alone instead of a more conventional 
FWI, tomography and migration workflow, ML is indeed being 
introduced into various aspects of these flows (e.g. Araya-Polo, 
et al., 2019; Øye and Dahl, 2019; Milosavljevic, 2020; Sun and 
Alkhalifah, 2020; Sliz et al., 2021).

after rotating the pilot through various angles, as indicated in 
Figure 4d-f (as we want to find interfaces with any orientation 
or dip). This approach would form part of a ‘convolutional 
neural network’ (CNN) (e.g. Waldeland, 2018).

Figure 5 shows an example of using ML to pick the top of 
salt from a large multi-survey 3D marine project: this survey 
spans tens of thousands of square kilometres, hence automating 
picking of the salt is a great benefit for project turnaround.

Alternatively, we might take a completely different 
approach: within the 2D image segment, take a smaller group 
of pixels, say 3x3, and cross-correlate every 3x3 subset from the 
2D image with all other possible 3x3 subsets. The covariance 
matrix of these correlations could then be used to identify which 
parts of the 2D image were similar to each other, thus helping 
to characterize regions as being inside or outside the salt body.

The above procedures can be improved by optimizing the 
parameters that were used: this is where the training step comes 
in again. In this case, the parameters to be optimized could be 
the width and height of the pilot rectangle, any tapers on its 
edges, whether or not we rectify the values, and whether or not 
we scale or equalize the values in the image being analysed, etc. 
Again, investigating all possible combinations of such parame-
ters is a wholly impractical task for a person to undertake, but is 
trivial for an algorithm (given enough computing power).

We compare the location of the salt body estimated by the 
procedure with that provided by an interpreter. Setting up an 
iterative least-squares back-propagation workflow to adjust the 
parameters until the cost function is minimized will improve 
the estimation procedure. If this is done on many thousands 
of different examples where the human interpretation was 
provided, then the chances are that any new (and previously 
unseen example) will be correctly identified by then running 
the (now) optimized procedure. In this way, with an interpreter 
having labelled which parts of the training data sets were inside 
and which parts outside the salt body, the ML procedure should 
be able to label a salt body in the new, previously unseen data 
with a high degree of accuracy (Figure 3f). In the TGS Kaggle 
examples, the ML algorithms had success rates in the high 90 
percentiles.

Full waveform inversion in the context of ML
Yet another example of a misfit-minimization procedure that 
readers may be familiar with is that of full waveform inversion 
(FWI). In FWI we perform forward modelling of shot gathers 
for an initial velocity model, and iterate changing the model 
until these modelled shots closely resemble the actual field data 
(e.g. Lailly 1983; Tarantola 1984; Virieux et al., 2014; Brittan et 
al., 2013; Jones, 2018, 2019). The parameters involved in FWI 
are primarily the earth model parameters governing elastic wave 
propagation (velocity, anisotropy, density, attenuation, etc.), but 
may also include more mundane processing parameters, such as 
the mutes applied to the shot gathers, the tapers on the mutes, 
the amplitude scaling applied to the trace, band-pass filtering, 
offset-weighting, etc.

The difference between the modelled and field data con-
stitute a ‘residual’. A series of equations linking a change in 
parameters to a change in the residual is set up (referred to as the 
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Discussion
The background to ML is fairly straightforward in terms of how 
the maths is set up to update parameters by back propagating 
prediction errors. However, the outcomes of an ML procedure 
in terms of what it can achieve are generally non-intuitive and 
perhaps beyond human (or at least a geophysicist’s) comprehen-
sion. This is perhaps best demonstrated in facial recognition, 
where an appropriately trained ML procedure can recognize 
an individual’s face even when presented with pictures of that 
person at different ages. The optimized parameters are likely to 
be somehow encoding for things such as distance between the 
eyes, distance of the eyes from the edge of the face, distance 
from the nose to the lips, etc. With enough hidden layers, and 
activation functions, it can be seen that information can be 
‘boiled down’ to a limited number of key indicators that encode 
for enough information so as to identify (recognize) what we 
want. Humans have evolved to achieve this task effortlessly, 
but comprehending how an ML procedure accomplishes this is 
another matter.

For more general applications, if a NN has been ade-
quately trained then deployment of a trained NN for a routine 
geophysical problem can be much more efficient and less 
time consuming than the standard deterministic or iterative 
techniques, especially in manpower-intensive tasks (e.g. first-
break picking). This could be particularly useful in cases 
when near real time processing is required, such as velocity 
estimation while drilling for pore-pressure anomaly detection. 
Uncertainty estimation would be another fruitful avenue to 
explore: employing several different trained NNs could furnish 
a range of equi-probable solutions, which could then be used to 
estimate error bounds on a parameter.

Introductory tutorial material on geophysical applications 
of ML can be found in the EAGE online lecture by Waldeland 
(2018), and for an excellent series of lectures on the underlying 
mathematics of ML, I think that the four tutorials by Sanderson 
(2017) and the two lectures by Amini (2020) give a solid 
foundation.
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