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reflector. Map migration is an approximate migration technique 
whereby a time horizon is picked from, say, a stacked section, 
and then, in conjunction with an interval velocity field, Snell’s 
law is used to reposition this horizon to its equivalent depth 
location. This in effect delivers a low-cost emulation of a full 
depth-migration. Map demigration is the reverse procedure, 
converting a depth horizon picked from a depth-migrated 
image to the corresponding (perhaps multivalued) time horizon 
positions. Such methods of assessing structural uncertainty have 
been described by Cognot et al. (1995); Thore and Hass (1996); 
Thore and Juliard, (1999); and Thore et al. (2002). Rather than 
using map migrations, we could also run many full-volume 
migrations (e.g. Bell el al., 2017) which would be more costly. 
However, in order to assess positioning uncertainty using these 
many migrated volumes, we would still need to pick specific 
image elements in order to statistically quantify their volumetric 
displacement distribution.

The second approach is more esoteric, involving the 
mathematics of inversion used within the tomographic solvers, 
dealing with what is called the model-resolution matrix. This 
can be used to assess the uncertainty associated with each of 
the inverted parameter values, but it still needs to be used in 
conjunction with something such as a map migration to assess 
the effect of model variation on image position (e.g., Jackson, 
1972; Menke, 1989; Berryman, 1997, 2001; Chiţu et al., 2008; 
Etgen, 2008; Osypov et al., 2008; 2011, 2013, Letki et al., 
2013; Jones, 2010, 2018; Raffle et al., 2017; Schuster, 2017). 
Bachrach (2010) discusses similar methods for anisotropic 
parameter uncertainty estimation.

Introduction
Given that we can never obtain a ‘correct’ model based on 
measured data (e.g. Jackson 1972), we should ideally assess 
how suitable the derived approximate model or resultant image 
is. However, putting error bars on images turns-out to be an 
extremely difficult task to undertake in a quantitative manner. 
Many workers have attempted this over the years, and there are 
two broad approaches to accomplishing this task.

First, we can assess the measured residual moveout in 
the final migrated image gathers, after a comprehensive mod-
el-building exercise, which usually would involve several 
iterations of ray or waveform tomography. Then, using an 
estimate of the inherent measurement uncertainty in the resid-
ual moveout (RMO) measurements (e.g., Ashton et al., 1994; 
Al-Chalabi, 1997; Chen and Schuster, 1999; Tom Armstrong, 
personal communication, 2008; Jones, 2010), many dozens of 
slight perturbations are introduced into the RMO values, with 
a distribution bounded by the estimated RMO uncertainty (and 
the distribution of uncertainty might be further bounded by 
picked horizons and/or rock physics constraints). For each of 
these slight RMO perturbations, a tomographic inversion is run 
so as to update the velocity model. This yields an ensemble of 
possible realizations of the velocity model, each of which is 
consistent with the observed data, to within the uncertainties 
associated with our measured RMO. Then for a specified target 
horizon, map demigration is performed (just once), followed by 
successive map migrations for each of these perturbed, equally 
valid representative velocity models, giving rise to a spatial 
distribution of possible positions for each specified picked 
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Tomographic inversion
Once residual moveout has been picked (usually following 
migration), we can invert this information using a tomographic 
technique, so as to update the velocity model (Stork, 1992; 
Lo and Inderwiesen, 1994; Luo et al., 2014). For reflection 
travel-time tomography this procedure can be described as 
follows. Consider a simple subsurface model divided into nine 
cells each with its own constant velocity, for a source at location 
‘A’ and a receiver at location ‘C’, for the ray path reflecting off 
the dipping surface at ‘B’ (Figure 1a). The arrival time equation 
for the ray-path for the third offset shown in Figure 1b comprises 
contributions from the small elemental travel paths dij, through 
each of the cells traversed (where the index i pertains to the offset 
and the index j pertains to the model cell), such that:

 (5)

For a CMP gather, we have many arrival time measurements for 
a given subsurface reflector element, and each source-to-receiver 
travel-path can be decomposed into its elemental contributions 
from each cell (note that element d38 in Figure 1a is ‘v’ shaped, 
as it includes the reflection point). In general, each raypath will 
not actually be a straight line, but may refract at each grid-cell 
boundary, and may also be curved. Travel times autopicked on 
the real data gathers will be compared to the ray-trace com-
puted travel times at each iteration. To determine the velocity 
distribution along this ray path, tomography tries to solve a set 
of simultaneous equations, which can be accomplished as we 
often have more equations than unknowns (i.e., a given cell in 
Figure 1c is traversed by more than one raypath).

The expression for the travel time from Equation 5 can be 
written as:

 (6)

where  ti is the total travel time along the ith ray-path
 dij is the path length of the ith ray in the jth cell

 vj is the velocity in the jth cell
 sj is the slowness in the jth cell

Or, in matrix notation: T = DS. This is shown as a matrix cartoon 
in Figure 2.

Contrary to what we have shown in Figure 2, for a realistic 
problem we would have many more travel-time measurements 

Intrinsic errors
Whenever we attempt to pick or compare moveout observed on 
a gather, either before or after migration, there will always be 
some intrinsic measurement error in what we observe. This can be 
assessed by considering the difference between moveout applied to 
a CMP gather with a correct velocity and moveout applied with a 
velocity slightly in error. For some particularly small error, we will 
no longer be able to notice the difference between the two moveout 
corrected gathers, due to the offset and band-limitation of the data.

If we perturb the NMO velocity for an event from Vrms to 
(Vrms+ΔVrms), then the respective arrival times at offset x are:

 (1)

and

 (2)

and assess the time difference on the far trace, ΔTnmo resulting 
from this velocity change, then for Vrms>>ΔVrms we obtain to 2nd 
order in x:

 (3)

Where:
T0 is the zero offset arrival time of the moveout trajectory 

being analysed
x is the maximum offset, for the event at a given time T0

Vrms is the approximation for stacking velocity
For a wavelet of time duration τ, if we adopt a resolution criterion, 
say the thin bed Rayleigh approximation using τ/4 as the discern-
ible time shift at a maximum offset x, and given that τ ~ 1/fd then 
we obtain the following expression for intrinsic RMS velocity 
error to 2nd order in x:

 (4)

where:
fd is the dominant frequency of the reflection event’s wavelet 

under analysis,
and ΔVrms is the velocity difference being resolved.

Figure 1 a) A nine cell model with the raypath for a single source-receiver pair. b) A CMP gather showing moveout for a single reflector for five offsets. c) Raypaths 
corresponding to the offsets shown in b).
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the model) and there is no exact solution due to measurement 
error and other approximations. So, instead, we have to derive an 
approximate solution that best fits the observed inconsistent data 
according to criteria of our choosing (e.g. Jackson 1972).

For example, to obtain the best solution using the least-
squares criteria, one pre-multiplies both sides of the equation 
T = DS by the transpose of D, DT, to form the symmetric and 
invertible square covariance matrix DT D, and then the least-
squares solution is given by :

 (9)

The quantity DT D is referred to as the Hessian matrix.
Alternatively, we could rearrange equation 7 and consider the 

vector quantity (T-DS) — the residual modelling error, which 
we ideally want to be zero, and then recast the problem as a 
minimization of a ‘cost’ or ‘objective’ function, F (S) = (T-DS)T 
(T-DS) , i.e., the sum of the squares of the residual error quantity, 
over all time samples, for all traces, in all shots.

Unfortunately, there will always be many slightly different 
models that could yield forward modelling that matches the 
observed field data equally well, and also, the inversion may 
converge on a local minimum (e.g. Jones 2018) which is not truly 
representative of the real earth structure. Such non-uniqueness 
in the solution is a direct consequence of the all the corners 
that we have to cut to solve our problem, such as the linear 
approximation described in Appendix 1. Other important sources 
of uncertainty include, for instance, the noise in the input data, 
errors in the matrix D, and limited or no illumination of portions 
of the discretized velocity model, due to the survey geometry. 
Hence, one important conclusion to draw from inverse theory 
and practice is that there is never a correct answer, and never can 
be: at best we can only obtain models that adequately explain the 
observed data. This uncertainty is a manifestation of the principle 
of non-uniqueness in inverse theory.

So if you ask ‘is the model right’ then you’re asking the wrong 
question!

The structure of the D matrix, and estimating the 
data and model covariance
Note that the D matrix has dimensions of: [n_ measurements X 
n_model-cells] = [n_rays X n_parameters], and a single column 
vector in D represents the small path length segments of all the 
rays that pass through a single model cell for a given reflector 
(Figure 3).

Additionally, we can expand the analysis to also assess 
behaviour of the measurements themselves, by assessing the (co)

than model cells. For example, consider a survey of 1000km2 
characterized by a subsurface parameter model extending to a 
depth of 10 km, with tomography cell size 100m*100m*100m: 
in this case we have 10 million model cells. If this survey was 
covered by 100,000 shots, with 10 cables and 100 receivers 
per cable, we would have 100 million traces, and if we utilized 
observed data for 10 reflectors then we would have about one 
billion ray-equations. Although we would typically have many 
more ray-equations than model cells (an overdetermined matrix 
system), due to measurement errors and the fact that certain 
cells may not have been crossed by any ray (an unconstrained 
matrix system), the solution is highly non-unique, and we have to 
solve the simultaneous equations approximately, perhaps with a 
least-squares approach, and perhaps introducing constraints that 
represent geologically plausible solutions. Measurement errors 
can arise, for example, from ambiguity in travel time picking 
due to errors in wavelet phase or approximated spatial receiver 
location resulting from binning.

We want to estimate the value of velocity in each cell of our 
model: to accomplish this we must solve a set of simultaneous 
equations. We use an auto-picker to measure the observed travel 
time for an event at a given offset, and we obtain estimates of the 
distance a ray travelled (dij) in each cell by using a ray-tracing 
algorithm. Now we want to invert the matrix equation to yield S:

 (7)

 (8)

Unfortunately, in most cases, the matrix D is not invertible, 
because it is not square (i.e., in general the number of travel time 
measurements is not the same as the number of velocity cells in 

Figure 2 Matrix cartoon. For model cells with no ray coverage, we just leave a zero 
in the D matrix for that value.

Figure 3 Ray paths and elements of the D matrix 
associated with all the small ray-path segments 
associated with a single model cell.
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surface source and receiver locations, also keeping track of the 
associated elemental travel path lengths dij through the gridded 
parameter model. Hence the descriptions offered here are still 
those actually used.

Prior and posterior error distribution
We now need to describe the distribution of possible model errors 
and relate this to our estimates of initial error (the ‘prior’ esti-
mates) so as to derive some final errors (the ‘posterior’ estimates).

So far we have espoused a deterministic point of view and 
concentrated on finding one best possible solution. By using 
model regularization and introducing weights to the residuals 
(as described in Appendix 1) we reduce the range of acceptable 
solutions. However, we have not yet made any inroads into 
assessing how tomography redistributed and reduced the initial 
error estimates.

The Bayesian approach, on the other hand, provides us with a 
way of tackling both issues with a refreshing change of attitude: 
instead of fighting uncertainty and looking for a single ‘best-fit’ 
model, Bayes’ theorem lets us embrace it (Bayes, 1763; Duijn-
dam 1988a, 1988b). Now we take S and T to be random variables 
and we use Bayes’s theorem to estimate how the probability 
distribution of S, P(S), changes given the information contained 
on T and its probability distribution, P(T).

Central to this estimation are the concepts of joint distribution 
of two random variables and of the conditional probabilities 
between them. The joint distribution, P(S∩T) provides the 
chance of observing simultaneous realizations of both variables. 
If the two random variables were independent of each other, then 

variance matrix of the input data (under the assumption that they 
have zero-mean value), TTT = Cd. If we assume the data errors 
(e.g., the errors in the picks made by the auto-picker) are inde-
pendent and identically distributed about the true value, then the 
data covariance matrix is the data variance σ2 multiplied by the 
identity matrix, which will have dimensions [n_rays X n_rays], 
(recall that the identity matrix is a square matrix with ones on the 
diagonal and zeroes elsewhere). In practice this is never really 
the case as the autopicker is typically constrained to follow the 
same phase across offset and CRP location, and any phase error 
remaining after pre-processing and migration will give rise to 
small, but non-zero, off-diagonal terms in Cd.

These measurements come from the residual error estimated 
from the RMO picking made on the CRP gathers: each raypath 
has an error. For a given reflector event, we can either give all 
rays in the CRP a related error as from parametric picking or 
allocate separate errors as from non-parametric picking. The data 
errors will propagate throughout the inversion process leading to 
estimated model parameters with model covariance Cm

Remember that a covariance measures how two variables 
correlate – in this case it tells us how much uncertainty is in the 
inverted model given the uncertainty in the observed data. Recall 
that the travel time data (T), is related to the model parameters 
(S), via:

 (10)

Thus model covariance matrix SST is given by:

 (11)

Where σd
2 is the variance of the input data. 

Although here we have shown the derivation of Cm derived 
from the overly simplistic expression in equation (10), it can also 
be derived from the more useful expression in equation (9).

Here we have assumed that the measured data errors are 
independent of each other, hence their covariance matrix (TTT = 
Cd) has non-zero terms only along its diagonal, and thus we can 
replace the data covariance matrix Cd with the individual data 
variances, as expressed in σd (these individual data variances 
could also be identical, but do not have to be).

The model covariance matrix Cm has dimensions n_param-
eters x n_parameters and is independent of the model values 
themselves. It is a function of the matrix D and the data errors. 
It is also worth noting that it is proportional to the inverse of the 
Hessian (DT D).

Each individual row of the D matrix refers to a ray, and its 
contributions to all possible cells in the model. We have ‘fold’ 
traces in a CRP and ‘nr’ ray paths in total. Each column pertains 
to a model cell, and the small path length segments of all the rays 
contributing to it (Figure 4). We have ‘np’ cells in total.

In contemporary industrial implementation, we perform ray 
tomography in the depth-migrated domain, measuring residual 
moveout on CRP gathers. However, the actual inverse problem 
for such depth-domain tomography is usually solved by ray 
tracing back from the subsurface image point where this error was 
picked so as to compute the corresponding travel time back to the 

Figure 4 Structure of the D matrix: each row of the D matrix refers to a ray 
(shaded in pink), and its contributions to all possible cells in the model. There 
are ‘fold’ traces in a CRP and ‘nr’ ray paths in total. Each column pertains to a 
model cell (shaded in yellow), and the small path length segments of all the rays 
contributing to it.
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Equation 14 relates the known (measurable) initial model 
covariance Cm-prior, and quantities derived from the tomographic 
inversion that updated this model, to the final post-tomography 
model error Cm-post. We then proceed to form a large suite of 
model perturbations which are used to perform many map 
migrations, so as to build an ensemble of equally possible 
images, in order to estimate the associated standard deviation 
and image-position error bars corresponding to this suite of 
solutions. Examples of this technique were first outlined by 
Osypov et al. (2013) and can also be found in Raffle et al. 
(2017) and Vlassopoulou (2017).

It should be noted that the workflow described above pertains 
to the final model parameters as they linearly relate to the data 
residuals. If the final tomography model happens to be trapped 
at a local minimum, which is occasionally undoubtedly the case, 
then there is no guarantee that the final model bounded by the 
posteriori model covariance will incorporate the true model.

Workflow summary
The preceding steps in preparing a suite of velocity models can 
be summarised in the flow chart in Table 1. The final production 
velocity model, associated depth image and gathers are the start-
ing point. The remnant velocity error, as manifested in residual 
moveout on the CRP gathers, is picked for use in the tomography. 
The tomographic inversion algorithm is then re-run, but this time 
not to update the velocity model, but rather to output the various 
matrices associated with the remnant moveout error and final 
model.

Case study example
The example shown here comes from the Ivory discovery (Raffle 
et al., 2017), which lies within the Nyk High, located in the 
north-eastern part of the Vøring Basin in Norwegian waters. 
The main challenge in mapping the extent of the discovery has 
been seismic imaging at the crest of structures bound by major 
faults (e.g. fault shadow effects), together with depth conversion 
uncertainty and a poor well-to-seismic tie. After a comprehensive 
reprocessing and imaging project, structural uncertainty was then 
estimated using the Bayesian statistical analysis of the tomo-
graphic resolution matrices in conjunction with prior uncertainty 
estimates, as described earlier.

this chance is simply the product of each of the variables’ indi-
vidual occurrence probabilities, P(S∩T) = P(S) P(T). However, 
when the variables are not independent, the joint distribution 
needs to be generalized to incorporate the precedent that we either 
observe T with knowledge of S or vice-versa. Bayes’s theorem 
guarantees that the joint distribution is symmetric in relation to 
both situations, that is:

 (12)

where P(T|S) is the conditional probability of observing T given 
S, whereas P(S|T) represents the conditional probability of the 
reverse case. Bayes’s Theorem, then, is the key to assess how 
errors in the input data, and/or in the model description and/or in 
the physics used to predict travel times are mapped by tomogra-
phy into our final estimations of slowness. Indeed, by exploiting 
the equalities shown on Equation 12, we note that:

 (13)

Hence, the updated (the posterior) distribution of our model 
parameters, P(S|T), results from the modification of a prior 
model distribution P(S) by the observed input data via the con-
ditional probability P(T|S), with P(T) acting as a normalization 
factor.

Equation 13 can also be viewed as a new cost function at 
the core of the Bayesian inference (inversion) problem — used 
to estimate the average model of the posterior distribution — in 
which the realization Smap connected to the maximum of P(S|T) 
is be obtained by maximizing P(S) P(T|S).

Appendix 2 outlines how we may estimate the posterior 
model covariance matrix Cm-post, based on the tomographic 
inverse problem derived from Equation 13, and additionally, how 
to construct a suite of equi-probable parameter models, m, each 
of which is consistent with the observed data, and satisfies the 
tomographic solution:

 (14)

This is the expression (Equation A2.12) derived in Appendix 2, 
where

mmap represents an average model solution,
Cm-prior is the prior model covariance
 Cm-post is the final model covariance after tomographic update
r is a random vector drawn from the Normal distribution
K is a proportionality matrix relating Cm-prior to Cm-post.

Cm-prior plays a key role in finding the estimated posterior model 
distribution, and incorporates influences from the range of 
model perturbations, the spatial correlations of perturbations, 
any theoretical/empirical relationships between different types 
of parameters (e.g. velocity and anisotropic parameters δ, ε), 
accounts for different types of input used in the model building 
process (e.g., well logs), and acts as the pre-conditioner for the 
approximate solution of the Hessian. Table 1 Flowchart outlining the overall workflow for uncertainty estimation.
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a subset of the 200 interval velocity model perturbations obtained 
via the decomposition and random selection described in Equations 
14 and A2.5. These 200 model realizations are then used to compute 
the standard deviation of this distribution (Figure 7), while Figure 8 
shows the prior error distribution, the posterior error distribution 
(following tomographic update), and the percentage change in the 
standard deviation (an overall reduction in the error): indicating 
that tomographic inversion results in a significant reduction in error 
in the shallower section as compared to the deeper section. If we 
had a very large number of perturbations, rather than just the 200 
used here, then the standard deviation of Figure 7 would be the 

In this case, we obtained the model prior to error distribution, 
Cm-prior, by scaling the final velocity model with a lateral average 
of the intrinsic error derived from Equation 4. It is noted that for 
Equation 13, the statistical distribution of observed data, P(T), 
acts as a normalization factor. This can be determined post-facto 
by calibrating the final result of the statistical analysis against 
a well database, so as to ensure that the relative distribution of 
image errors, obtained from the statistics derived from Equation 
14, resembles the actual observed well mis-ties.

Figure 5 shows a typical inline section, with the final tomo-
graphic interval velocity model superimposed, and Figure 6 shows 

Figure 5 Typical inline structure of data in the study 
area with the final tomographic interval velocity 
model superimposed. Line length displayed ~15 km.

Figure 6 A few examples of the 200 model realization 
perturbations for a single inline vertical section 
(corresponding to the inline shown in Figure 5). The 
colour bar indicates the velocity variations that could 
still explain the data to within noise.

Figure 7 Standard deviation from 200 model 
realizations, as exemplified by the subset shown in 
Figure 6.
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as the ±2 standard-deviation bounds for the fault — shown in 
green, and in blue the maximal bounds (i.e., the largest actual 
value of lateral shift for all 200 perturbations with respect to the 
input sample location). Figure 10 shows the 200-point scatter 
cloud for a single input point, and also a representation of the 
inline, crossline, and vertical depth errors for this fault plane, here 
represented by the simple depth, inline, and crossline thicknesses 
of the 200-point scatters. This information can also be plotted 
after an eigenvector rotation so as to follow the major and minor 
axes of the scatter ellipsoids.

Discussion and conclusions
Putting error bars on images is not trivial: the mathematics is 
complicated and the costs of inverting the associated matrices is 
high. However, if we want to fulfil the requirements for prospect 
de-risking, then the errors associated with an interpretation 
based on a seismic image must be somehow quantified. The 
technique described here can offer one such route to relative error 
quantification.

Perhaps not surprisingly, if the ‘final’ model used as the basis 
for the uncertainty estimation is not very good, then the estimated 
errors will be larger. For example, Vlassopoulou (2017) and 
Vlassopoulou et al. (2019) show that the uncertainty estimated 
after the third iteration of tomographic model update is larger 

same as the posterior error distribution shown in Figure 8b (and 
also assuming that all other parameters were consistent).

Figure 9 shows the corridor of 200 model realisations of the 
main fault plane, indicating in red the mean fault location as well 

Figure 8 a) Prior model standard deviation, b) post-
tomography final posterior model standard deviation, 
c) percentage change in the standard deviation 
(√[Cm-post/Cm-prior]-1).

Figure 9 PreSDM image showing fault plane and uncertainty corridors based on 
200 model realizations. Red: fault average position, Green: 2*Sigma confidence 
interval, Blue: outer bounds. The yellow vertical line indicates the region of the fault 
were the uncertainty results are considered reliable (with dip approximately 350). 
Beyond these bounds, the fault imaging is poor or the ray-coverage is sparse (from 
Raffle et al., 2017, courtesy of Spirit Energy, Norge).
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tion code, and to Jacques Leveille, Nick Bernitsas, John Brittan, 
and Peter Rowbotham for their help in improving the paper.
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approaches ±30 m. b) Scatter corridor thickness 
after the 6th and final iteration of tomographic model 
update is reduced to approximately ±12 m (from 
Vlassopoulou, 2017).
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Appendix 1: least-squares, weighting, and 
regularization
Recall from Equation 9 that we had:

 (A1.1)

The least-squares solution S in Equation A1.1 is in reality a 
unique and exact solution, but to an approximated inversion 
(optimization) problem. The hidden assumption here is T=DS, 
which approximates the true, but non-linear, relationship between 
observed data (travel-times) and model parameters (slowness). 
Thus, we are actually solving a linear inversion problem in which 
we seek the minimum of a function that provides us the sum of 
the squares of the differences between modelled and observed 
travel-times:

 (A1.2)

Where F(S) is referred to as the ‘cost function’ or ‘objective 
function’ and is the quantity to be minimized, on average, over 
all the measurements.

The cost function is then a quadratic function of model 
parameters S; from calculus the minimum (or maximum) of 
a quadratic function of a single variable is found by setting 
its first-derivative to zero and solving for the aforementioned 
variable. Likewise (and ignoring a factor of two, which cancels),

 (A1.3)

This is exactly what we have done when writing DT(T-DS) = 0 
above and then finding S in Equation A1.1; the only difference 
is that DT(T-DS) represents a multi-dimensional generalization of 
the derivative, called the gradient of F(S).

Starting with some initial guess of parameters S0, the mini-
mum of the cost function F(S) will occur when we perturb S0 by 
ΔS so as to achieve a minimum:

 (A1.4)

This can then be solved for ΔS by expanding F(S0+ΔS) as a 
Taylor series and truncating to first order so as to evaluate ΔS 
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As will be shown later in this appendix, the solution of this can 
be determined as being:

Sest = (DTD + ε2I)-1DTT (A1.10)

Given the huge size and sparse nature of the matrix D, the tomog-
raphy algorithm then solves Equation A1.10 iteratively to find S. 
This might be done for all locations on all layers simultaneously, 
but given the linear approximation, better results are obtained by 
adding another level of outer iterations, updating the model in a 
top-down manner. In production-type tomography workflows, 
several such outer iterations are typical, each involving a new 
forward modelling exercise (e.g. Lo and Inderwiesen, 1994; 
Jones 2010).

Regularization
Solving Equation A1.1 directly will yield a possible solution to 
the inverse problem using the inconsistent noisy data with which 
we are working. However, the data inconsistencies, along with 
various approximations we make, means that there will in fact be 
a large family of possible solutions that all equally well explain 
the observed data. The volume of model space that contains these 
possible solutions is referred to as the ‘null space’ of the solution.

This null space can be reduced by adding various constraints 
to the solutions we derive. For example, we could require a solu-
tion that not only minimized (T-DS), but that also gave a model 
that was spatially smooth (i.e., the model spatial derivatives were 
small). Such constraints are usually referred to as ‘regularization’ 
terms.

Model Regularization of the least-squares solution is one of 
the techniques commonly used to mitigate the local-minima and 
non-uniqueness pitfalls. Regularization reduces the range of esti-
mated models by adding penalty terms to the cost function to help 
steer the solutions away from models that are deemed (however 
defined) less acceptable or less likely to be true. Regularization 
terms usually comprise some norm of the obtained model (e.g., 
be smooth, and/or have a limited range of variation) and may be 
written in a generalized form as

 (A1.11)

where R is a conveniently chosen matrix that encodes further 
ways to penalize a predefined set of models. Equation A1.11 
allows for a variety of choices: one may choose R=I (an identity 
matrix) and So = 0, thus penalizing models with larger STS; or, we 
may take R as matrix representation of a derivative, which will 
favour solutions describing smooth models; using a non-zero ref-
erence model means that we seek solutions that are similar to So.

Another way of reducing and coping with uncertainty is 
to introduce weights in the residual vector (T-DS), via a linear 
transformation, W (T – DS), which will help in dealing with noise 
in the input data and with errors in the matrix D. If the errors are 
independent, then the matrix W can be diagonal.

With these modifications in hand we can write a more sophis-
ticated cost function that now contains two terms, one related to 
the data fitting objective and another to the model norm penalty 
from Equation A1.11:

using the derivative of the cost function evaluated with the 
starting model guess S0,

 (A1.5)

And rearranging to obtain ∆S gives:

 (A1.6)

In the expressions for ∆S above, the term in the inverse bracket 
is referred to as the Hessian and the second term as the gradient.

The solution of Equation A1.1, S = (DT D)-1 DT T works 
for overdetermined systems of equations, i.e., when there are 
more rays (equations) than model cells (unknowns). On other 
occasions, (as seen in Figure 1b, where some cells have no ray 
coverage) the converse may happen (there are more unknowns 
than equations, an underdetermined system) and thus one 
would like to get S such that it represents the simplest solution 
in some sense. This might be, for example, the solution with 
smallest norm value of STS (i.e., a model with small covari-
ance, such that we avoid rapid variation between model cells), 
while still obeying T=DS. Using a weighting vector, referred to 
as a Lagrangian multiplier γ, one may write the corresponding 
cost function as:

 (A1.7)

By taking the gradient of the cost function F (with respect to 
the variables S and γ) and setting it to zero and then solving the 
resulting expression for γ, one finds the minimum-length solution 
to be (Menke, 1989):

 (A1.8)

In general, the tomography problem is of a mixed nature rather 
than being either purely under- or overdetermined, because there 
are model cells that are traversed by many rays (they are overde-
termined), while others are not probed at all (underdetermined). 
The most common approach is to combine these two end-member 
solutions into a single optimization problem leading to a damped 
least-squares solution that attempts a compromise between 
reducing fitting errors and providing a simple (however simple is 
defined) solution. The damped qualifier comes from the intrinsic 
structure of the problem: it is posed like a least-squares problem, 
but with the addition of a penalty term (or damper) that rewards 
models that represent simpler solutions (e.g. smoother models or 
with smaller norms). A cost function for a damped least-squares 
problem can be written

 (A1.9)

where ε is a positive real number used to control the size of the 
penalty term.
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while also focusing on the estimation of parameters that can 
actually be resolved by the geometry of our seismic experiment 
and the physics used to set up D.

For example, using a weight proportional to the inverse of the 
initial data and model covariances (Cd and Cm-prior respectively), 
and noting that Sest is the posterior model estimate and S0 is the 
prior model estimate, we obtain:

Spost= Sprior + [DTCd
-1D + C-1

m-prior]
-1 DTCd

-1(T-DSprior) (A1.19)

This formulation leads-in to the next appendix wherein we 
reformulate the problem in terms of conditional probability and 
a more pragmatic and tractable solution for the inverse of the 
Hessian [DTCd

-1D + C-1
m-prior].

Appendix 2: determining a posterior Cm via 
Bayesian inference
It was noted earlier that Equation 13 could be used to recast a new 
minimization problem, obtained by maximizing P(S) P (T|S). If 
we now assume that P(S) and P(T|S) are described by Gaussian 
functions, then P(S|T) is also a Gaussian and its maximum Smap 
is indeed the sought average model of the posterior distribution. 
Also, we can now rewrite the cost function F(S), by minimizing 
the negative of the logarithms of P(S) and P(T|S) as (Tarantola, 
2005):

F(S) = -[log P(S) + log P(T|S)] (A2.1)

Recall from Equation A1.12 that:

F(S)= W(T-DS)T W(T-DS) + ε2[R(S-S0)]
T[R(S-S0)],

and that in Equation A1.19 we used the covariance matrices as 
the weighting functions:
C-1

m-prior
 = ε2RTR and C-1

d
 = W2; then with such changes:

F(S)= (T-DS)T C-1
d

 (T-DS) + (S-S0)
T C-1

m-prior
 (S-S0) (A2.2)

and Smap takes the form of the solution found in Equation A1.19.
To complete our description of the posterior distribution 

P(S|T), we need ‘only’ to evaluate its covariance matrix, which 
is also given in Equation A1.17. As demonstrated in Tarantola 
(2005), this covariance matrix is the normalization factor of the 
gradient in Equation A1.19 (i.e., the Hessian of the cost function) 
namely:

Cm-post = [DTCd
-1D + C-1

m-prior]
-1 (A2.3)

However, this is computationally impractical to evaluate. 
Indeed the algorithms used to actually solve Equation A2.3 do 
that without explicitly forming or inverting this huge matrix. 
As a work-around, we can form an approximate representation 
of the most dominant parts of it using a truncated eigenvector/
eigenvalue decomposition. Once this truncated eigen-decompo-
sition is done we are then finally able to answer queries such 
as ‘what are the most important (i.e. dominant) aspects of the 
model error?’

F(S) = W(T-DS)T W(T-DS) + ε2mTm

F(S) = W(T-DS)T W(T-DS) + ε2[R(S-S0)]
T[R(S-S0)] (A1.12)

where ε (an arbitrarily small positive number) governs the 
trade-off between those two terms. Despite the addition of the 
model norm term and the new weights in the residual vector, the 
minimization of Equation A1.12 is also a linear, least-squares 
problem, which can be solved as follows. Firstly, noting that we 
wish to find a minimum in the cost function F(S), then as was 
done with Equations A1.3 and A1.4, take its partial derivative 
with respect to S:

∂/∂S [F(S)] = -W2(T-DS)TD + ε2[R(S-S0)]
TR = 0 (A1.13)

We then evaluate this for a value of S that will be at a minimum, 
namely when we are at S0+ΔS.

But also recall that the Taylor series expansion of a function 
of the form Q(x0+Δx) can be truncated to first order to yield: 
Q(X0+ΔX) = Q(X0) + ΔX ∂/∂X [Q(X0)].

Then applying such an expansion to Equation A1.13, which 
already has a first derivative, yields:

∂/∂S [F(S0+ΔS)] = ∂/∂S [F(S0)] + ΔS ∂2/∂S2 [F(S0)] (A1.14)

Given that the second derivative of F(S) is: ∂2/∂S2[F(S)] = 
W2DTD + ε2RTR, then Equation A1.14 can be written as:

∂/∂S [F(S0+ΔS)] = -W2(T-DS0)
TD + ε2[R(S0-S0)]

TR + ΔS [W2DTD 
+ ε2RTR]

 = -W2(T-DS0)
TD + ΔS [W2DTD + ε2RTR] = 0 (A1.15)

And rearranging gives:

W2(T-DS0)
TD = ΔS [W2DTD + ε2RTR] (A1.16)

However, noting that ΔS = Sest - S0, where Sest is the final estimat-
ed (ideally ‘true’) model, then:

Sest= S0 + W2(T-DS0)
TD [W2DTD + ε2RTR]-1  (A1.17)

Or alternatively

Sest= S0 + [DTW2D + ε2RTR]-1 DTW2(T-DS0)  (A1.18)

If we do not specify a preferred model (so that S0 will be 
0), and set the weights W to be unity (W=I), and set the 
regularization also to be R=I, then Equation A1.18 reduces to  
Equation A1.10.

Ultimately we wish to be able to assess how errors and 
uncertainties in the input data and initial models are mapped by 
the tomographic operator D into our model estimations. With this 
goal in mind we may define the weights found on Equation A1.18 
in terms of both the input data and the model parameters errors. 
This is justified because we want to attribute more importance to 
data points that we deem more representative or just less noisy, 
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 (A2.10)

and its square root is

A low-rank approximation of this square root may be obtained by 
considering the k largest eigenvalues:

Then for sufficiently large k, where the eigenvalues are smaller than 
one, it is possible to approximate the second term above like so:

With further algebraic manipulation, one may simplify the above 
result to a more suitable form

 (A2.11)

And hence Equation A2.9 becomes:

m = mmap + C1/2
m-prior (I + Uk Lk Uk

T) r

m = mmap + C1/2
m-prior K

 r (A2.12)
 
Where
Cm-prior is the prior model covariance
K = (I + Uk Lk Uk

T)
r is a random vector drawn from the Normal distribution

 is the i-th eigenvalue found on the diagonal matrix Λ

To assess which are the dominant components of D, using 
eigen decomposition we note that:

Cm-post = (DT Cd 
-1 D + C 

-1
m-prior) 

-1

  = Cm-prior (Cm-prior D
T Cd 

-1 D + I) 
-1

  ≈ Cm-prior (U Λ UT + I) 
-1  (A2.4)

Recall that the D matrix has dimensions of : [n_ measurements 
X n_model-cells] = [n_rays X n_parameters], and given that we 
have written U Λ UT = Cm-prior D

T Cd 
-1 D, the eigen-vector matrix 

U has dimensions [n- parameters X n- parameters].
Given the Woodbury matrix identity, which notes that in 

general for matrices A, B, U, V:

(UBV+A)-1 = A-1 - A-1 U(B-1 + VA-1 U)-1 VA-1

Then, Equation A2.4 can be written:

Cm-post = Cm-prior [I – IU(Λ-1 + UTIU)-1 UTI] 

  = Cm-prior [I – U(Λ-1 + I)-1 UT]  (A2.5)

And noting that: (Λ-1 + I)-1 = Λ/(I + Λ), this becomes:

Cm-post = Cm-prior [I – U {Λ/(I + Λ)} UT] (A2.6)

Putting A= Λ/(I + Λ) this becomes:

Cm-post = Cm-prior (I – UAUT)  (A2.7)

This new form of Cm-post is more convenient to evaluate, as it 
removes the explicit requirement to evaluate the inverse term in 
Equation A2.4.

Once we have found the dominant sources of error, we can 
select a meaningful subset of the, say k, eigenvectors to draw 
a representative random suite of perturbed velocity models, all 
of which explain the observed data equally well. The range of 
perturbations are then bounded by our estimates of possible error.

Bayesian inference provides a quick way to compute the 
model realisations that equally fit the data:

m = mmap + C1/2
m-post r  (A2.8)

Which using Equation A2.7 can then be written as:

m = mmap + C1/2
m-prior (I – UAUT) 1/2 r (A2.9)

This can be further simplified by approximating the square-root 
term, via a truncation of the eigen-decomposition of the of the 
matrix of the form B = (I - UAUT). Following Bui-Thanh et 
al. (2013), and noting that the identity matrix can be written as 

, then the spectral representation of B is




