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Introduction
In one form or another, data transforms underpin a large 
part of contemporary signal processing, whether in geo-
physics, communications, or video and image processing. 
I begin this overview by describing why transforms are of 
interest, and how we can conceive of a transform. I use three 
well known, but distinct, classes of transform, namely the 
Fourier, Radon, and eigenvector transforms. Although these 
methods are quite different, between them their proper-
ties serve to exemplify the salient details involved in most 
methods.

The underlying motivation for using a transform can be 
manifold, for example:
n	 To try to find a representation of some input data object 

where desired parts of the input signal can be segregated 
from undesired parts, e.g., primary and multiple separa-
tion in seismic processing.

n	 To find a more compact way of representing and/or stor-
ing information, as with data compression.

n	 To identify common parts of a suite of data objects to 
facilitate characterization and recognition of features and 
patterns in these and other objects.

To begin the description of how we can think of a transform, 
we must first have some basic hypothesis about how we 
can describe an object. The object in question might be, for 
example, a single seismic data trace, a 2D data gather, a pho-
tograph of a person’s face, or a 3D medical image of a human 
torso. In the case of the Fourier transform, the hypothesis 
asserts that a single 1D series of samples of data can be rep-
resented by a summation of sine waves, each with an ampli-
tude weight and relative phase delay. Or, in facial recognition 
image processing, we might assert that a set of photographs 
of faces could be represented by some average representative 
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face, plus a sum of additional 2D correction images repre-
senting various deviations from this average face.

The starting object is the input data, and the things that 
it can be represented by are the transform objects. The set of 
transform objects we use to describe the input is called the 
basis of the transform because it is the basis on which we are 
making the description of the input object. The transform 
objects are variously referred to as the basis functions, basis 
vectors, or in some cases principal components, in different 
publications.

The numerical dimensions of the data define its domain. 
For example, a 3D volume of recorded seismic data has 
dimensions of two-way travel time in seconds, inline direc-
tion (metres) and crossline direction (metres), and so is in the 
(t,x,y) domain. A 1D seismic trace is said to be in the time 
domain, and Fourier transforming that trace would produce 
data in the frequency domain.

With these notions in mind, we have to assess what contri-
bution the input data make to each of the transform domain 
objects or, conversely, what weight is applied to each transform 
object when summing them together to recreate a version of 
the original input. To do this, we need to assess how similar 
each input object is to each of the transform objects. Stated 
differently, what are the characteristics of the transform? For 
some specific classes of transform, these transform weights 
constitute the elements of the eigenvectors. (The German word 
for a characteristic in the context of self is ‘eigen’). To assess 
how much each transform object contributes to the input, or 
what proportion of the input contributes to the transform 
objects, we need the notion of similarity.

Similarity
To introduce the concept of digital similarity, consider the fol-
lowing example. Take two digital photographs of the same 
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relative dB. The Fourier transform is very widely used in geo-
physics, for 1D functions, and for 2D and 3D data ensembles 
when it is also known as plane wave decomposition.

In a 1D Fourier transform, the orthogonal principal 
components are pre-determined in that they are a set of sinu-
soids whose form is independent of the original input traces 
that we are decomposing. Several other types of transform 
with pre-determined basis functions also exist, such as the 
Walsh transform which decomposes a trace into forms of 
square waves (e.g., Beauchamp, 1975). Such square-wave 
decompositions are of use in archaeology, as reconstruction 
of maps of near-surface magnetometer or resistivity data 
tend to emphasize linear and right-angled (corner) features 
associated with foundations of buried building remains. For 
a 2D or higher dimensional ensemble decomposition, we can 
either decompose into suite of pre-determined (deterministic) 
functions, as with the Fourier and Walsh transforms, or 
alternatively we can decompose into a suite of orthogonal 
functions derived from the input data themselves, as with the 
Karhunen–Loève (KL) transform and other singular value 
decomposition (SVD) methods. In the geological literature, 
this latter approach when used with certain other assump-
tions is called ‘factor analysis’ (e.g., Davis, 1973).

Non-orthogonal transforms
Orthogonality is a nice property to have when attempting 
to separate different parts of a digitally represented object. 
When the principal components show no shared variance, 
they are said to be orthogonal, but there are some transforms 
that decompose the input data into principal components 
that do exhibit shared variance, and these transforms are 
said to be oblique (e.g., Brown, 2009). There are also other 
transforms, such as the Radon transform, which are likewise 
not inherently orthogonal and produce non-orthogonal 
basis functions, but which can be used to reconstruct near-
orthogonal subsets of the original data (Trad et al., 2003).

The mathematical form of the transforms
Mathematically, the transforms discussed here are very dif-
ferent from each other. I will not dwell on these differences, 
but rather on the common features that make them useful. 
For example, a Fourier transform for continuous data is 
expressed as an adjoint integral pair: the exact forward and 
inverse transforms. The KL transform pair is expressed in 
terms of a projection matrix and its transpose, whereas the 
Radon transform for discrete data can be written as a sum-
mation of a limited subset of transform domain traces.

In simple terms, these three transform pairs can be 
written as follows. For the Fourier transform, we sum over 
a range of sinusoids so as to build-up a representation of 
an arbitrary input signal  in terms of the sinusoids :

� (1)

� (2)

face where the colour scale for each pixel in the photograph is 
represented by a number in the range, say, ±100, and overall 
the numbers representing the picture have zero mean. If these 
images were identical and we overlaid them, then pixel by pixel, 
all overlapping pixels will have the same numerical values. If we 
multiply these overlapping numbers and sum their products, i.e., 
perform a correlation at zero-lag, we will have a single number 
which can characterize the similarity between the two pictures. 
This single number is called the variance when the distribution 
of numbers has zero mean. If the pictures differ slightly, then the 
sum of these products will, in general, be smaller than for the 
identical images. Furthermore, if the images were totally differ-
ent, in general the sum of products would tend to zero.

Orthogonality, eigenvectors, and eigenvalues
If we took a set of vaguely similar photographs, and per-
formed these zero-lag correlations between all possible pairs 
of images, we would have a table, or matrix, of the variances 
between the images, referred to as the covariance matrix. If 
we then formed an average representative image, perhaps by 
a least-squares fitting process, and subtracted the weighted 
average image from all of the original images, we would have 
a new set of images. None of the new images would resemble 
the average because we would just have removed that compo-
nent from each image. These resulting images are said to be 
orthogonal to the average image, as the correlation of any of 
the new images with the average image would be zero. This 
kind of analysis underpins the advances in some facial recog-
nition software, e.g., the eigenface decomposition techniques 
described by Muller et al. (2004) and Papadakis et al. (2007).

If we continued this procedure of removing the common 
parts of the images, we would end up with a new set of imag-
es, each of which was orthogonal to the others. And each of 
the original images could be reconstructed as a weighted sum 
of the new orthogonal images. The new orthogonal images 
constitute the principal component images of the set of 
original input images, and the weighting functions constitute 
the eigenvectors of the system. If we computed the sum of 
squares of the numerical values constituting each orthogonal 
image, this would be the amount of energy in each of the 
principal component images, and this single representative 
number is called its eigenvalue, the square root of which is 
referred to as the singular value.

The same kind of decomposition can be performed on 
collections of single traces, or 2D ensembles, as with the 
photographs, or on higher dimensional objects. For example, 
geophysicists will be very familiar with the Fourier transform, 
which decomposes a single trace into a representative set of 
sinusoids. Each sinusoid is orthogonal to the others: correlating 
them with each other produces a zero. The amplitude spectrum 
constitutes the eigenvector weighting function, and the power 
spectrum (the power in each sinusoidal component) gives the 
eigenvalue for each frequency component (e.g., Easton, 2010). 
However, the plots of such spectra can be misleading in this 
context because the scales are often normalized or shown in 
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This notion of a ‘lossy’ transform, which does not, and can-
not, fully reconstruct the input data, is discussed later. In the 
various forms of the transform, the steering vectors are usu-
ally referred to as the p values (Figure 2).

Steering vector along which to compute 
similarity
The basis of all these transforms is the attempt to find simi-
larity between each input trace, or group of traces, and the 
principal components we are decomposing into. However, 
when we compare traces, either through the covariance 
matrix computation or by comparing to a deterministic prin-
cipal component such as a sinusoid, we also have the option 
of comparing in different directions.

Figure 1 shows a 2D gather with a number of trajectories 
indicated on it. This 2D ensemble of seismic traces could be 
a shot gather, an NMO-corrected gather, a seismic section, 
or a digitized picture of a face rasterized with, say, a vertical 
column vectors: the nature of the 2D object is not inherently 
important. If we compared traces to each other by simply 
looking laterally, then we are making comparisons along a 
horizontal trajectory, such as line a) in Figure 1. Conversely, 
if we compared traces by moving along the linear dipping 
line b), we would obtain another result. These directions 

Remember that the complex exponential term represents 
both the frequency and phase delay of the sinusoid:

� (3)

The variables t and f could represent, say, time and frequency. 
This similar-looking pair of integrals constitutes the ‘there-
and-back-again’ transform pair. Practically, for discretely 
sampled data, we replace an integral with a summation over 
a limited range of frequencies. This will be discussed in more 
detail later. The Fourier transform, especially in two or three 
dimensions, has a special place in seismic data processing due 
to the convenience of representing slopes measured in the 
(t,x) domain 2D data by corresponding inverse slopes in the 
(f,k) domain data. These slopes represent velocity informa-
tion and so can be used by certain classes of filter for noise 
removal or multiple suppression.

For the KL transform, which does not decompose data 
into a predefined set of functions, we have the following 
transform pair:

� (4)

� (5)

The terms wik, that weight the summation, the eigenvectors, 
can be determined from manipulations of the covariance 
matrix, looking for the most similar components of the input 
data. The best known way of doing this uses singular value 
decomposition (e.g., Strang, 1980). The transform traces 

 are the n principal components corresponding to the n 
input traces.

And finally, for the Radon transform expressed as a 
discrete summation, we have the following transform pair, 
cast in terms of velocity v, and offset h:

� (6)

� (7)

We write  rather than  because we do not fully 
reconstruct  with this transform, but only the part of it 
encompassed by the range of values in the summation. The 
terms for t and τ, like , are expressions representing 
the direction of the steering vector along which we integrate 
or sum. In this instance, the formulae represent a hyperbola, 
but can be replaced with that of a parabola or a straight line 
for the other forms of the Radon transform. Also, because 
we accept that this transform is not attempting to reconstruct 
the data exactly, we can formulate the Radon transform as 
a minimization problem to get the best fit to the data over 
the limited range of steering vectors being used. For example, 
the transform can be cast as a least-squares error minimiza-
tion problem to find the best model describing the input 
data, x, over some user-specified range of steering vectors.  

Figure 1 Examples of possible trajectories along which to compute trace-to-
trace similarity: the steering vectors.
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a single principal component for each steering vector, the 
contribution of that principal component to each input trace 
is a constant, so in a data reconstruction using this one steer-
ing vector, there would be no lateral variation in amplitude 
in the contribution from this single principal component. To 
reconstruct any real AVO behaviour, we would have to rely 
on the superposition of different contributions to reconsti-
tute lateral amplitude variation. Hence, we could think of 
the KL and other eigenvector decomposition transforms as 
providing all the orthogonal principal components for a sin-
gle steering vector direction, whereas the Radon transforms 
provide just the first, non-orthogonal, principal component 
for a range of steering vector directions.

An example of a KL transform is shown in Figure  3: 
nearly flat lying events representing geology (a) are added to 
steeply dipping noise (b) to produce a ‘contaminated’ seismic 
section (c). After decomposition into orthogonal principal 
components, two reconstructions are performed: Figure 3d 
shows a data reconstruction using the first five principal 
components, which in this case carry 75% of the total input 
energy, and Figure 3e shows the misfit reconstruction, using 
the remaining principal components. Given that the steering 
vector was for flat-lying events, the reconstruction shown 
in Figure 3d is a good representation of the near-flat-lying 
geology, and the remainder resembles the dipping noise.

Reduction of dimensionality
Consider a graph of two variables in (x,y) coordinates, as 
shown in Figure 4a, with a scatter of values which lie clus-
tered in the (x,y) plane. To adequately describe this data dis-
tribution, we only need these two axes, or dimensions, x and 
y. Now consider the addition of a third axis, or dimension, 
z, as shown in Figure 4b. This additional axis is superfluous 
in describing the data distribution. However, within this 
three-axis framework, if we were now to rotate the cloud 
of values onto new axes (x’,y’,z’), it would indeed require 
all three axes to describe the newly rotated data distribution 
(Figure 4c). It can now be seen that by analysing the 3D data 
distribution shown in Figure 4c, we can find a new projec-
tion onto the original 2D axes that adequately describe the 
data scatter. The procedures to find the minimum number 

of investigation and comparison are referred to as the 
steering vector directions. We could also look along curves 
rather than straight lines, such as along the parabola c) or the 
hyperbola d). We could also compute the similarity measure 
for a large suite of steering vectors, rather than just one. 
For example, the Radon transform (e.g., Sacchi and Ulrych, 
1995), which computes similarity by summing (integrating) 
along steering vectors as opposed to assessing similarity via 
analysis of a covariance matrix, is deployed in this way. This 
summation can be performed for a set of linear trajectories, 
yielding the linear Radon (τ-p) decomposition (Stoffa et al., 
1981); parabolic trajectories, yielding the parabolic Radon 
transform (Chapman, 1981; Hampson, 1986); and hyper-
bolic trajectories, yielding the hyperbolic Radon transform 
which, in a simple form, is used for velocity analysis and is 
then called a ‘velocity spectrum’ (Taner and Koehler, 1969; 
Yilmaz, 1989).

The representation of a single steering vector is a point 
in the transform domain: each line, whether it be linear, 
parabolic of hyperbolic, maps to a single point in the basis 
space (Figure  2). It should also be noted that the steering 
vector for the Radon transforms emanates from offset zero, 
In other words, the apex of the parabola or hyperbola is 
at zero offset. So, for shifted apex events, the basic Radon 
transform is inappropriate.

For those transforms that determine their basis functions 
by use of a covariance matrix, then the analogous situation 
is one in which the covariance matrix is formed by overlap-
ping, multiplying, and summing elements in the objects under 
consideration after shifting the individual traces or objects 
with respect to each other. We could compute the single, most 
similar, principal component for a set of steering vectors, as 
done for the Radon transforms, or we could compute all 
principal components for a single steering vector, as done 
in the KL transform (e.g., Hemon and Mace, 1978; Jones, 
1985), or all principal components for all steering vectors 
such as in the slant-KL transform (Jones and Levy, 1987).

In the case of having computed all principal components, 
the weighting vectors telling us how much each principal 
component contributes to each trace is called the eigenvector. 
In the case of the Radon transform, where we only compute 

Figure 2 A line in the input (t, x) domain maps to a point in the Radon transform (τ, p) domain. The transform can be computed for various trajectories, the 
steering vectors, along which trace-to-trace similarity is computed. The meaning of p is slightly different in each case.
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dimensionality of the problem. However, if we only have, say, 
seven unique parabolic trajectories in the original NMO’s 
CMP gather, such as those shown in Figure 5, then ideally we 
could adequately describe the data with only seven p values, 
thus reducing the dimensionality of the problem. In practice, 
due to the smearing in the transform and band-limited nature 
of the data, we would need more. Reducing the number of p 
values too much would not be really reducing the dimension-
ality of the problem, as we would no longer be adequately 
representing the data. Application to real marine data is an 
effective way of removing multiples, as shown in Figure 6.

Lossy versus lossless transforms
If you perform a forward transform, and immediately follow 
up with the inverse transform, then we can ask whether we 
recover what we started with or not. If we reconstruct the 
input data faithfully, within the limits of numerical accuracy, 
then this is a lossless transform. Examples are the Fourier 
and KL transforms. However, if we do not recover the input 

of dimensions to adequately describe a data distribution are 
central to orthogonal transforms, and use techniques such 
as singular value decomposition (SVD). It turns out that the 
eigenvalues associated with a description of a given data 
distribution tend to be very small, and thus can be ignored, 
for any unnecessary dimensions being used in an initial data 
description. In the context of say, seismic data traces, the 
scatter of points in Figure  4c could represent some trace 
attribute plotted versus both shot and receiver locations, 
whereas plotting the attribute against just midpoint might 
have been adequate.

In another context, if we took a CMP gather of 100 traces 
with normal moveout corrections applied, where the NMO 
had not perfectly flattened all events in the gather, that 
contained a varied and complex family of reflection events 
forming a suite of varied and different residual moveout 
trajectories in the gather, we could perform a parabolic 
Radon transform to produce 100 p-value traces in the trans-
form domain. In doing this, we would not have reduced the 

Figure 3 (a) Flat-lying ‘geology’ signal. (b) Dipping 
‘noise’. (c) Sum of (a) and (b) to create the input 
data. (d) KL reconstruction of the signal using 
the first five principal components. (e) KL misfit 
reconstruction of the noise, formed from principal 
components 6-24. (f) The principal components. 
From Jones and Levy (1987).

Figure 4 The same scatter of data points which lie in a 2D plane, represented in (a) a 2D space, (b) a 3D space where the z-axis is superfluous, and (c) a 3D space 
with rotated coordinates.
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ally its parabolic Radon transform would comprise a point 
located at , and the inverse transform of this point 
would adequately reconstruct the flat event in the CMP 
gather. However, if we had AVO in the flat input CMP gather 
data, we could not adequately represent the data with a sin-
gle point in transform space, but would need superposition 
of may such points to represent the AVO behaviour of the 
input data. Figure 7 demonstrates this concept: the flat-lying 
event has higher amplitude on the far traces; thus we cannot 
reconstruct it with a single p value, as other trajectories are 
required so as to constructively sum to build the greater 
amplitudes on the far offsets. If we computed all the princi-
pal components for this flat AVO event using, for example, 
a KL transform, then we could have reconstructed the AVO, 
but at a much higher cost compared to the single principal 

data, then it is a lossy transform. Examples are the Radon 
transforms. In a Radon transform, whether it be linear, 
parabolic, hyperbolic, or higher order ‘anisotropic’, we only 
investigate a limited, user-defined range of steering vectors, 
and we only estimate the commonest component for each 
of these steering vectors. Thus, the forward transform only 
investigates a limited part of the data space, and when we 
perform an inverse transform, we cannot fully reconstruct 
the data. It is in part for this reason, that we usually have the 
option to add back the non-modelled part of the input data 
during a Radon transform, especially if AVO analysis is later 
required because the offset-dependent amplitude variation 
might well be lost during the transform.

If we had a single flat-lying NMO-corrected event in a 
CMP gather, with zero-offset arrival time , then ide-

Figure  5 Left: 13 moveout trajectories, of which 
seven are the same (flat), thus giving a total of 
seven different trajectories. The flat-lying events 
with zero residual moveout representing prima-
ries; the six others represent multiples. Right: 
The parabolic Radon transform of these data. If 
we ignore the aspect of smearing in the trans-
form, then we can see that the input data can be 
represented by just seven unique p value traces, 
rather than the original 100 input seismic traces: 
this constitutes data compression. These p traces 
are not orthogonal to each other, as p traces con-
taining events with the same zero-offset time (τ) 
will give a non-zero correlation. However, a data 
reconstruction from events with well-separated p 
values will tend to be orthogonal. The p-axis has 
units of milliseconds moveout delay as measured 
on the far trace.

Figure  6 Application of a parabolic Radon trans-
form to a real normal-moveout corrected CMP 
gather from a deepwater area. The input CMP data 
exhibits far-offset aliased multiples. Application 
of a contemporary multiple suppression method 
using this technique is very effective. From Stewart 
et al. (2007).
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a single 2D object, those derived for a suite of 2D objects 
can be 2D. Similarly, if in medical imaging we compared a 
3D volumetric representation of a human torso with many 
such volume images, then the principal components could 
be 3D objects. Such technology might be used to identify 
anomalous giblets in the torsos of the subject being studied.

In Figure 8 are shown three eigenfaces resulting from the 
2D decomposition of a set of 600 facial images. The first, 
tenth, and 100th eigenimages from the set of 600 are shown. 
The eigenvalues of the decomposition (Figure 9) indicate that 
any of the input images could be reconstructed reasonably 
well from linear combinations of, perhaps, about 300 eigen-
images. Deciding how many eigenvalues are significant is 
not simple, but typically we specify how much of the input 
image’s energy we want to restore in the reconstruction, and 
sum over eigenimages so as to include this specified propor-
tion of the total input energy (Jones, 1985). In this context, 
‘energy’ is the sum of squares of the digital samples in the 
input image.

Figure 10 shows the reconstruction of one of the original 
600 digital images in the set, using a sum of the first most 
energetic 40, 100, and 450 eigenimages, respectively. If all 
600 eigenimages had been summed with their appropriate 
eigenvector weights, then this particular input image would 
have been perfectly reconstructed. Conversely, in Figure 11, 
we see a similar reconstruction using a sum of the first 
450 eigenimages, but this time for an image that was not in 
the original set of 600 used to create the transform’s basis set 
of principal component images. In this case, correlation of the 
new input image, in turn, with each of the 600 pre-computed 
eigenimages would have provided the weights (eigenvectors), 
but a perfect, or even a reasonable reconstruction using these 
weights in conjunction with the eigenimages is probably 
not possible, because this image never contributed to the 
computation of the basis set.

component of the Radon transform. However, if we had the 
more realistic scenario, with many flat and non-flat events all 
with differing AVO behaviour, then even the KL transform 
would fail, unless we computed all principal components for 
all steering vectors. In this scenario, the Radon transform is 
the most cost-effective decomposition to address separation 
of differing steering vectors, i.e., segregating multiples from 
primaries, whilst maintaining a good representation of any 
AVO behaviour.

One-dimensional versus multi-dimensional 
transforms
As previously described, the Fourier, Radon and KL trans-
forms can be thought of as methods which decompose each 
individual input trace in terms of the set of basis functions 
we are using, but each of the principal components is itself a 
1D object. In this regard, it does not matter if we are input-
ting a 2D or 3D ensemble of traces. We are simply seeking 
similarity along the steering vector direction, or the content 
of the trace expressed in terms of basis vector contributions, 
e.g., sine waves in the case of the Fourier transform.

However, if we were working with a suite of digitized 
photographs of human faces, then looking from one column 
vector to the next in a given image would not be of much use, 
as there is no inherent similarity between one vertical slice 
of the photo and the next. However, for this 2D object, we 
could directly compare a set of 2D images (photographs of 
people’s faces) by forming the covariance matrix between the 
suite of 2D images. In this way, we could find the ‘common’ 
image, and the subsequent next-most-common image contri-
butions. These 2D principal component images are referred 
to as eigenfaces in the facial-recognition literature. Whereas 
the Radon and KL transforms discussed so far have one-
dimensional principal components, i.e., a set of 1D principal 
components describing a collection of 1D traces comprising 

Figure 7 AVO cannot be recovered using a single 
p value for a flat event, rather we need the super-
position of many events to build-up the far trace 
amplitude increase, and we rely on destructive 
interference to cancel the unwanted contributions 
of the non-zero p trajectories at other offset loca-
tions. Left: A single flat-lying event with a three-
fold amplitude increase on the far traces. Centre: 
Parabolic Radon transform of these data, showing 
a linear dipping feature which is the manifestation 
of the hypothetical red lines drawn on image at 
left: these red lies indicate the additional parabolic 
trajectories required to reconstitute the increase 
of amplitude seen on the far traces. Right: Radon 
transform result for a flat event without AVO. 
The scales have been adjusted to emphasize the 
features. Note that some required trajectories can 
emanate from negative times. The p-axis has units 
of milliseconds moveout delay as measured on 
the far trace.



technical article first break volume 31, January 2013

www.firstbreak.org © 2013 EAGE58

Figure  13 is a cartoon representing the Fourier trans-
form of a continuous time function, and also the Fourier 
transforms of a sampling grid and measurement truncation 
operators. In the input time domain, the sampling grid is 
essentially multiplied with the continuous time function to 
provide the digitized data that we work with on the com-

Transform artefacts: the consequences  
of sampling
In their underlying mathematical forms, the transforms we 
use are integrals over continuous (analogue) functions. If 
we discretely sample the data being transformed, then we 
need to assess the impact of this sampling on the underlying 
representation of the continuous function in transform space 
(e.g., Bracewell, 1978; Chapman, 1981; Kanasewich, 1981).

Earlier, I mentioned the mathematical form of the three 
types of transform that have been discussed here, the Fourier, 
KL, and Radon transforms, and although these can be written 
in integral form, in the discrete world of the digital computer 
we do use summation in place of integration. For example, 
whereas the Radon integral pair of the forward and inverse 
transforms represents infinitesimal summation along the path 
of the integral (the steering vector direction), in the digital rep-
resentation of the problem, we have data on a regular grid of 
samples in, say, in time and offset, and it is highly unlikely that 
the line along which we want to sum will happen to fall nicely 
on the regularly gridded samples of the discrete data. Hence we 
have an immediate problem of not having data samples at the 
points in space where we want to sum them. As a consequence, 
we either have to accept degradation of the data during 
transformation, or we need to introduce some clever scheme of 
estimating what the data value would have been at a point on 
the integral path, based on what nearby actual data we have on 
the sampling grid. This problem is shown in Figure 12.

In addition, once we discretely sample a function, we can no 
longer capture information about frequencies above a certain 
value. The well-known Nyquist theorem relates the digital sam-
pling of data to the maximum frequency that can be represented 
in a signal. This is given as the inverse of twice the sampling 
interval, L, so for 4 ms data sampling, the maximum frequency 
is 1/2L = 125 Hz; or for offsets spatially sampled at 50m, 
the maximum wavenumber, or spatial frequency, that can be 
represented is 0.01 m-1. In practice, the maximum frequency that 
can be adequately represented in terms of reliable amplitude 
behaviour is only about two-thirds of the Nyquist frequency.

An abrupt termination of a function, i.e., stopping or 
starting your measurements after a certain time or distance, 
constitutes a step function, called a Heaviside function after the 
mathematician who characterized it. During an experimental 
procedure, we start the experiment, then we stop it: so we 
‘turn on,’ then ‘turn off’ the measurement of the process. This 
constitutes multiplying the theoretical infinite version of the 
underlying process with two step functions, i.e., we multiply 
the underlying continuous data with zeroes before we start 
measuring and after we stop measuring. This double Heaviside 
function has a Fourier transform response in the frequency 
domain that is an oscillatory function known as a sinc func-
tion, and the effect of this truncation on the spectrum of the 
real underlying data response is imposed via a convolution 
of the data spectrum with the truncation operator spectrum 
(Bracewell, 1978), resulting in a spectrum with a ringy appear-
ance even though the real, underlying data spectrum is smooth.

Figure 9 The eigenvalue distribution (spectrum) for the 2D basis decomposi-
tion of 600 sample reference images of human faces.

Figure  10 Reconstruction of one of the original suite of 600 images, using 
summation over the first 40, 100, and 450 eigenimages, respectively. If all 600 
eigenimages had been summed with their appropriate eigenvector weights, 
then this particular input image would have been perfectly reconstructed. 
Data courtesy of Neil Muller.

Figure 8 A selection of the eigenimages (principal component images) from 
a 2D decomposition of a suite of 600 digital images of human faces. Shown 
from left to right are the first, tenth, and 100th eigenimages. Data courtesy 
of Neil Muller (Muller et al., 2004).
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tion, which makes the point look like a tilted bow-tie. Here 
the sampling has been done both temporally and spatially to 
give, for example, a time sample every 4 ms and a spatially 
sampled trace every 100 m. The characteristics of the smearing 
operators can be understood by considering the contribution 
of a single input wavelet at zero-offset time τ0 and offset x. 
Figure 14 shows the contribution to the transform of a single 
waveform at offsets x = 0, 3, and 6 km. The superposition of 
the responses for all input offset contributions produces the 
total transform response shown in Figure 15.

One way to circumvent the undesired ringing or other arte-
facts introduced by truncation operators is to modify the shape 
of the truncation operator so that the ringiness of its transform 
is less pronounced. It is for this reason that we taper data edges 
prior to using transforms: all the data edges for the Fourier 
transform and the far-offset edge for the Radon transform. In 
addition, it has also been common practice to interpolate the 
input data prior to transformation, so as to reduce the deleteri-
ous effects of sampling on the transform process.

Regularity of sampling
If data are regularly sampled, then this regularity can be 
exploited to speed up computation, such as with the fast 
Fourier transform (Cooley and Tukey, 1965). Consequently, 
most processing techniques are developed with the assump-
tion that the input data are regularly sampled. However, 
most seismic data are acquired on a grid that is not truly 
regular, and which may also have extensive gaps requiring 
interpolation prior to subsequent processing. Hence much 
effort has gone into developing techniques to regularize 
irregularly and/or sparsely sampled data, e.g., the discrete 
and anti-leakage Fourier transforms (Sacchi and Ulrych, 
1996; Duijndam and Schonewille, 1997; Xu et al., 2005).

Historical example of sampling pitfalls
The behaviour of digital data is influenced by the imprint 
of the sampling processes used. Hence an understanding of 
the results obtained in an experiment, using data sampled 
discretely over a fixed range of measurements, implicitly 
involves an understanding of the filter responses of the sam-
pling and conditioning processes used in the experiment.

The earliest example of misunderstanding these processes 
of which I am aware is that of Knott’s (1897) analysis of 
periodicities in earthquake data brought about by lunar tides 
(Jones, 1980). If we take a time series that is infinitely long, 
it will have a certain Fourier frequency spectrum. However, 
if we truncate it to include only those measurements made 
over a fixed time period, such as one year, then the frequency 
spectrum will now be influenced by the truncation effects 
imposed on the time series, which is a sinc function with 
zeros at frequencies which are multiples of the inverse of the 
length of the truncation window. Knott (1897) interpreted 
the periodicity of the truncation operator’s ringiness as being 
a tidal period imposed on the earthquake data by lunar tides, 
as the ringiness happened to coincide with the expected 

puter. In addition, as we start and stop taking measurements, 
the underlying continuous function is truncated with step 
functions. In the Fourier transform domain, the transform 
of the truncation and sampling operators are convolved 
with the transform of the underlying continuous signal. 
Conventionally, we only plot the positive half of the first 
repetition of the total frequency-domain signal.

In the case of Radon transforms, whereas the continuous 
transform of the single parabolic trajectory in Figure 2 (centre) 
would have been a single well focussed point in the parabolic 
Radon domain, the effect of sampling acts on this point so as 
to smear it with the transform response of the sampling opera-

Figure  11 Reconstruction for an image that was not in the original set of 
600 used to create the transform’s basis set of principal components, using 
summation of the first most energetic 450 eigenimages. Reconstruction of a 
reasonable image in this case is unlikely, as the underlying properties of the 
input image are not captured in the basis set. Data courtesy of Neil Muller.

Figure  12 Where we would like to have data, on the line-integral path, in 
order to sum it as part of the transform, and where we actually have discretely 
sampled values. This sampling problem leads to wavelet distortion if not 
adequately dealt with.
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Figure  13 (a) The input analogue signal and its 
Fourier frequency spectrum. For the continuous 
signal, the frequency spectrum axis extends to ±∞, 
though the signal itself might be bandlimited, as 
shown here. (b) The data truncation operator is a 
‘boxcar’ function whose spectrum is a sinc func-
tion. (c) Sampling the data discretely at intervals 
of, say, 4 ms is essentially multiplying the analogue 
single with a 4 ms sampling comb, with zeros 
between live points at 4 ms spacing. The spectrum 
of a comb with time sample spacing L seconds is 
a comb with frequency spacing 1/L Hz. (d) In the 
time domain, multiplying the analogue signal with 
the boxcar and the sampling comb corresponds to 
convolving their frequency domain counterparts, 
to produce the spectrum shown. Conventionally 
we only ever display the first ‘repeat’ of the fre-
quency spectrum, out to a maximum frequency 
of ±1/2L, the Nyquist sampling theory limit. For 
example, for time domain data sampled at 4 ms, 
the Nyquist frequency will be 125 Hz.

Figure 14 Left: A wavelet on the near trace can be thought of as being made up of many curves all intersecting at zero offset, but with differing dips; hence 
the transform shows all possible dips, within the range scanned, for a constant arrival time. Centre: A mid-offset wavelet is constituted by a limited range of 
curves spanning a small time range. Left: A far-offset wavelet is constituted with a wider range of dips and times. The p-axis has units of milliseconds moveout 
delay as measured on the far trace.

Figure 15 Boundary artefacts for the parabolic Radon transform. We do not 
see events between the near-offset and far-offset artefacts because the side-
lobes of the wavelets tend to cancel, as they are not in-phase, leaving just the 
near and far boundary effects.

roughly 28-day period of the lunar cycle and its harmonics. 
Later the same year, Schuster (1897) pointed out the error 
of Knott’s ways, showing that an otherwise perfectly flat 
spectrum will display these periodicities once the truncation 
operators are applied to it: in other words, Knott’s (1897) 
analysis was biased by the effects of a filter response, which 
was perhaps masking any underlying meaningful data. 
However, Knott later justified his interpretation by noting 
that, to some extent, the truncation notches alone could not 
explain the observed periodicities.

The notion of tidally triggered earthquake activity was not 
investigated again for almost 100 years, until the Apollo astro-
nauts had installed geophones on the moon (e.g., Brzostowski 
and Brzostowski, 2009) and tidally triggered moonquake activ-
ity was observed (e.g., Goulty, 1979). This led to a reassessment 
of the earthquake catalogue, specifically for small magnitude 
quakes, and indeed tidally triggered earthquakes are clearly 
present (e.g., Datta and Kamal, 2011; Tanaka, 2012).

Conclusions
Orthogonality can be thought of as the absence of shared 
variance. Exploiting this property permits the separation of 
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different parts of an input signal, which is of great use in many 
data processing environments. Non-orthogonal transforms, 
although lacking this desired property, can also be of great use 
in cost-effectively removing unwanted components of an input 
signal. Awareness of the various types of transform, and their 
associated sampling–induced artefacts, is essential in under-
standing contemporary seismic data processing.
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