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ABSTRACT 
JONES, I.F. and LEVY, S. 1987, Signal-to-Noise Ratio Enhancement in Multichannel Seismic 
Data via the Karhunen-Loeve Transform, Geophysical Prospecting 35, 12-32. 

The Karhunen-Loeve transform, which optimally extracts coherent information from 
multichannel input data in a least-squares sense, is used for two specific problems in seismic 
data processing. 

The first is the enhancement of stacked seismic sections by a reconstruction procedure 
which increases the signal-to-noise ratio by removing from the data that information which is 
incoherent trace-to-trace. The technique is demonstrated on synthetic data examples and 
works well on real data. The Karhunen-Loeve transform is useful for data compression for 
the transmission and storage of stacked seismic data. 

The second problem is the suppression of multiples in CMP or CDP gathers. After 
moveout correction with the velocity associated with the multiples, the gather is reconstruct- 
ed using the Karhunen-Loeve procedure, and the information associated with the multiples 
omitted. Examples of this technique for synthetic and real data are presented. 

INTRODUCTION 
In many physical problems it is desirable to separate one type of coherent waveform 
(the ' signal ') from a different coherent waveform, or from incoherent energy. F-K 

filtering and coherency stacks have been traditionally used to achieve this separa- 
tion. We consider the Karhunen-Lotve (KL) transformation as an alternative 
method. 

Applications of the KL method to seismic signals were considered by Hemon and 
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Mace (1978), and more recently by Jones (1985), and Ulrych, Levy, Oldenburg and 
Jones (1983). Levy, Ulrych, Jones and Oldenburg (1983) introduced an extension of 
the transform to complex signals to address the problem of trace-to-trace phase 
variation. In the field of image processing, the KL transform has been widely applied 
to data transmission and analysis (Mallick and Murthy, 1984) and digital image 
enhancement (Ready and Wintz 1973, Ahmed and Rao 1975, Huang and Narendra 
1975, and Andrews and Patterson 1976a, 1976b). 

We expand upon the applications introduced by Levy et al. (1983) and Ulrych et 
al. (1983), and look at two specific problems, namely: 

(a) the separation of signal from incoherent and dipping coherent noise in stacked 
seismic data, 

(b) the suppression of multiples in common-depth-point (CDP) or common-mid- 
point (CMP) gathers by isolating coherent energy associated with a particular 
velocity, from other coherent energy. 

M A T H E M A T I C A L  BACKGROUND 
There are many ways in which the KL transformation can be derived (Ulrych et al. 
1983). The approach of Kramer and Mathews (1956) is, however, very straightfor- 
ward and revealing. We first present the essence of that paper: 

For data compression, we consider the problem as follows. Given a set of n real 
signals xi( t )  (i = 1 . . .  n), we define a transformed set $ i t )  and a transformation 
(rotation) matrix A (yet to be defined) such that 

n 

$ i t )  = 1 a i j x i ( t )  j = 1 . . .  n, 
i =  1 

where aij  are the elements of A (see appendix A). The signals t,bj(t) are chosen such 
that they form an orthogonal basis, so that each signal xi( t )  can be expressed 
(exactly) as 

n 

xi@) = bij$hj(t) i = 1 . . . n, 
j =  1 

or approximately as 
m 

a,(t) = 2 bij $j( t )  i = 1 . . - m ;  m < n ,  
j =  1 

where Zi(t) is the ith reconstructed signal, bij are the elements of B, the inverse 
transformation matrix, and m is the number of basis functions used in the truncated 
expansion. 

The objective at this point is to reconstruct xi( t )  to within a given error using the 
smallest possible number of basis signals. For a given m, we require that the trans- 
formation matrices A and B be those that minimize the least-squares error 
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Kramer and Mathews (1956) showed that the rows of the matrix A consisted of the 
normalized eigenvectors of the covariance matrix r, defined as 

where y i j  are the elements of r, and that B = A (in the notation of Kramer and 
Mathews (1956), our A would be transposed). The covariance matrix r is symmetric 
and positive semidefinite and hence is decomposable 

r = RART. 

Here A = diag (Al, A, . ’ ‘ A,) with Al 2 A2 2 . . . A,. The columns of R contain the 
normalized eigenvectors rj where rrj = k j r j .  When A = R, the rotated signals IC/j(t) 
form an n-dimensional subspace of a Hilbert space. Using these basis elements 
defined in (2), the truncation error from (3) is 

Since the eigenvalues of r are arranged in descending order it follows that the first 
basis function can be used to reconstruct more of the total signal energy than any 
other basis function. Thus, it is called the first principal component. Similarly, the 
second basis function can be referred to as the second principal component, etc. 

For the applications to be described, it is important to note: 

(a) The Karhunen-Loeve transform produces a set of uncorrelated (orthogonal) 
principal components from the data set; the size of the j th eigenvalue is a 
measure of the amount of coherent energy present in the jth principal com- 
ponent (appendix A). Hence, reconstructing the original signals using only those 
principal components which are associated with ‘ fairly large ’ eigenvalues 
amounts to reconstruction of the coherent energy present in the input seismo- 
grams. 

In the context of this paper, ‘coherent ’ refers to events which are similar 
horizontally in a trace-to-trace sense. This similarity is later extended to events 
which appear similar along specified dip directions. 

Conversely, reconstructing the original data from those principal com- 
ponents associated with the smaller eigenvalues amounts to reconstructing the 
less coherent or ‘anomalous’ parts of the input data. 

(b) If the original data xi(t) consist of scaled versions of some basic signal, then all 
the eigenvalues of r with the exception of A, are zero and the first principal 
component is a scaled version of the same basic signal. 

(c) If the original data possess no trace-to-trace coherency (i.e., if they are 
orthogonal), then r is diagonal and the data set itself corresponds to the set of 
principal components. Hence no advantage can be gained by using the trans- 
form. 
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IMPLICATIONS 

These points carry a number of implications which suggest various applications in 
geophysical data processing. Several applications have already been discussed by 
Jones (1985), Ulrych et al. (1983) and Levy et al. (1983). Here we take advantage of 
these implications to deal with two further topics in multichannel seismic signal 
processing. After introducing the applications with reference to the background 
information, we present examples of both synthetic and real data to demonstrate the 
efficacy of the method. 

Isolating coherent components 

The separation of coherent information present in a set of seismic signals is achieved 
by reconstructing the input data using only those principal components which are 
associated with the ‘larger’ eigenvalues of the covariance matrix r. In practice, a 
number of reconstructions have to be made, as the choice of the ‘best ’ reconstruc- 
tion is subjective. In the mode of operation to be followed here, the number of 
principal components used in the reconstruction is determined by the requirement 
that a specified amount of the coherent energy present in the input be present in the 
output. We express this requirement in terms of the percentage reconstruction 
energy 

and choose m accordingly. 

Isolating steeply dipping events and anomalous features 

Given a set of seismograms featuring both flat and dipping events, we note that 
their covariance matrix r contains information pertaining to all the various dips 
present. However, with the definition of r given in (4), the shallowly dipping events 
will be recognized as the most strongly correlated portion of the section and hence 
they may be reconstructed faithfully from principal components which correspond 
to the larger eigenvalues. Conversely, the dipping events are recognized as less 
coherent and can be reconstructed from the principal components corresponding to 
the smaller eigenvalues. This later reconstruction is achieved by 

n 

2i(t) = bij$j( t )  i = 1 . . . n ;  m I n. 
j = m + l  

(7) 

In practice, the index m needed for the above separation scheme is found by trial 
reconstructions. 

The procedure described also holds for anomaly reconstruction. In this applica- 
tion we reconstruct the zone of interest by discarding the most coherent informa- 
tion. 
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SEPARATING ‘ S I G N A L ’  F R O M  ‘NOISE’ 

Synthetic data examples 

Separating steeply dipping and shallowly dipping events. To demonstrate how the 
KL reconstruction segregates events of different dip, we use a set of synthetic seis- 
mograms depicting shallowly dipping events overlain by steeply dipping events. 

Twenty-four synthetic seismic traces representing shallowly dipping events 
superimposed on steeply dipping coherent ‘ noise ’ events, such as those introduced 
into a final stacked seismic section by marine streamer cable motion (Larner, Cham- 
bers, Yang, Lynn and Wai 1983) or ground roll, were constructed. We introduced a 
progressive phase change (from 0 to 71/3 rad) to the wavelets across the events 
representing the geological horizons, and introduced a vertical fault of offset 36 ms 
at the 10th trace. We then added 10% white noise (all noise levels are expressed here 
as a percentage of the maximum trace amplitude). 

Figure l a  shows the seismic representation of the basic geological model-phase 
shifted wavelets in shallowly dipping horizons offset by a vertical fault. Figure l b  is 
the ‘noise’ section, i.e., steeply dipping events plus random noise. Figure l c  shows 
the contaminated synthetic seismic section described above (i.e., the sum of l a  and 
lb). In fig. Id we see a 75% reconstruction of the data-the criterion governing 
reconstruction was the reconstruction energy, defined in (6). We note that the events 
which deviate from the flat-lying character of the model have been severely attenu- 
ated, leaving the representation of the underlying ‘ geological ’ structure basically 
intact. 

Conversely, using (7), we can reconstruct to discard the most common part of 
our data. In fig. l e  we have reconstructed the portion of the information contained 
in the remaining principal components not used in fig. Id. It is evident that the 
latter reconstruction has brought forth the steeply dipping events which are present 
in fig. lc. 

The phase character of the signals has been preserved, as has the distinctiveness 
of the ‘fault’ edge. However, we note an increase in the background noise in 
comparison to fig. la. This is a residual effect brought about by discarding principal 
components which contained contributions from both the dipping noise and the flat 
lying waveforms. The 24 principal components corresponding to the data in fig. l c  
are seen in fig. If. The first five principal components are characteristic of flat lying 
events and combine with the appropriate weights to produce the data of fig. Id. The 
next few principal components (6-12) show dipping patterns which combine to form 
the dipping waveforms of the input data. The principal components have been 
normalized for plotting, otherwise only the first few would have a discernible ampli- 
tude. 

Noise suppression. The second example we consider is similar to the first, but 
with 50% white noise added to the first seven and last eight traces. Note that the 
fault location is between traces 7 and 8 in this example. In figs 2a and b, we see the 
seismic data and noisy section after bandpass filtering (0-50 Hz). Attempting to 
isolate the model from the noise, we reconstructed the seismograms in fig. 2b to 
72% of the total input energy. Figure 2c shows that this attempt has been 
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Fig. 1. (a) Seismic representation of the geological model: phase shifted wavelets in shallowly 
dipping horizons (up to 2 ms per trace), offset by a vertical fault at the 10th trace. (b) The 
‘noise’ section: steeply dipping coherent events (dips between 16 ms and 24 ms per trace, e.g., 
from marine streamer noise or ground roll) and 10% random noise. (c) A sum of the previous 
two data sets: this is the input for the processing. (d) A 75% reconstruction of fig. lc, 
requiring the first five of the 24 principal components. Note the preservation of phase infor- 
mation, and the clarity of the fault edge. (e) A misfit reconstruction (principal components 
6-24) of the data shown in fig. lc, isolating the dipping noise events. (f) The 24 principal 
components corresponding to fig. lc. The first five principal components are dominated by 
strong peaks characteristic of flat lying structure. Note the smaller amplitude peaks in the 
band of principal components 6-17 (shaded). These waveforms combine to form the steeply 
dipping events. 

reasonably successful-the noise level has been considerably reduced, and the phase 
character and fault edge have been well preserved. Mostly, the fault edge is not 
smeared over adjacent traces but remains distinct. 

 slant-^^. If the geological model comprises more steeply dipping parallel (or 
sub-parallel) beds, then we could use the ‘ slant-Kr. ’ procedure described in 
appendix B. This modifies the calculation of the covariance matrix so that the 
segregation of dipping events is biased in favour of those with the specified dip ((Bl) 
in appendix B). 
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A data set similar to that used in example 1 was constructed, but the dips on the 
‘geological’ horizons were increased by a factor of five. Following the same pro- 
cedure, we see in fig. 3 (a) the seismic section, (b) the section plus noise and 
‘streamer noise’, (c) the data after a dip of 8 ms per trace has been removed, (d) the 
75% reconstruction depicting the underlying structure, (e) a misfit reconstruction 
isolating the dipping noise events, and finally, (f) the reconstructed data with the dip 
reinstated. The phase character and fault definition are well preserved, whereas the 
dipping noise events have been severely attenuated. 

0.0 0.5 0.0 0.5 0.0 , 0:s 

Fig. 2. (a) Synthetic data similar to that of fig. la, with a vertical fault between traces 7 and 8, 
after bandpass filtering (1C50 Hz). (b) The data after addition of 50% random noise to the 
first 7 and last 8 traces, and bandpass filtering as above. (c) A 72% reconstruction requiring 
four of the 24 principal components. Note the marked reduction in the background noise 
level and the preservation of the essential features. 

Real data examples 
Following the trials on synthetic data, we proceed to exemplify the method’s ability 
to enhance coherency in real stacked data. In the reconstructions shown, it is noted 
immediately how the uncorrelated background noise level has been reduced and 
trace-to-trace coherency thus enhanced. 

In fig. 4a we have selected a window of 100 traces from a conventionally pro- 
cessed stacked section. The traces were decomposed into their principal com- 
ponents: the first five principal components accounted for 85% of the input energy, 
and the first twelve principal components for 95% of the energy, i.e., for this data we 
need only 12% of the 100 principal components to almost perfectly reconstruct the 
input data. Figures 4b and 4c, respectively, show the 95% and 85% reconstructions. 
Note the increase in coherency in the zone 1.1-1.5 s, which consists of interbedded 
sand-shale sequences. 
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Fig. 3. (a) Steeply dipping (between 7 ms and 10 ms per trace) sub-parallel phase shifted 
events with a vertical fault. (b) The data plus the dipping 'noise' events of fig. lb. (c) The 
flattened contaminated data, i.e., fig. 3b after a dip of 8 ms per trace has been removed. (d) A 
75% reconstruction requiring 5 of the 24 principal components. (e) A misfit reconstruction 
(principal components 6-24) of the data shown in fig. 3c, isolating the dipping noise events. (f) 
The reconstruction after the dip has been reinstated. Again, the phase character and fault 
definition are well preserved, whereas the dipping noise events are severely attenuated. The 
background noise level has increased in places, since we have omitted some principal com- 
ponents which contained both the desired signal and the dipping noise events. 

In the 95% reconstruction, there is a general increase in coherency, while small- 
scale features are also preserved, e.g., the small lens-like feature depicted in the box 
at about 1.1 s between traces 55-75, is enhanced in the 95% reconstruction. 
However, discarding more principal components-as done with the 85% 
reconstruction-leaves the section looking very smooth and continuous, especially 
over areas with small-scale features. The lens-like feature is obliterated in this recon- 
struction. The phase structure of the major horizons remains intact in both recon- 
structions; this can be seen by examining the waveforms along the edges of the 
section. 

To demonstrate the slant-Kr. procedure, in fig. 5 we consider 96 traces from a 
conventionally processed stacked section. The events in this section dip to the left 
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Fig. 4. (a) One hundred traces from a conventionally processed stacked section. Note the 
discontinuous events in the lower part of the section (2.1-2.7 s) and the small lens-like feature 
in the box at 1.1 s. (b) The 95% reconstruction requiring 12 of the 100 principal components. 
In this reconstruction, the background of incoherent energy has been reduced greatly, and 
small scale features such as the lens highlighted in the box are preserved. (c) The 85% 
reconstruction requiring 5 of the 100 principal components. In this reconstruction, the back- 
ground of incoherent energy has also been reduced greatly, but small-scale features such as 
the lens highlighted in the box have been obliterated, because by this reconstruction we have 
left only the gross features. 

about 0.1 s over the 96 traces, and the computation of the covariance matrix was 
adjusted to accommodate this dip. The strong pair of arrivals seen above 1.0 s in the 
input data (fig. 5a) are clarified markedly in the 95% reconstruction (fig. 5b). 
However, the 85% reconstruction (fig. 5c) loses much of the finer detail. A further 
example of loss of resolution is the small ‘pull-up’ type event in the box A. This 
feature is well preserved in the 95% reconstruction, but lost in the 85% reconstruc- 
tion. 

As a corollary to truncated reconstruction, the following point is important. In 
the examples we saw how the data could be almost perfectly reconstructed from a 
relatively small subset of principal components, i.e., the required storage space will 
be drastically reduced, and data transmission rates from one storage medium to 
another will be increased (Kramer and Mathews 1956, Ready and Wintz 1973). This 
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Fig. 5 .  (a) Ninety six traces from a conventionally processed stacked seismic section. Note the 
background noise surrounding the pair of dipping events above 1.0 s. Also note the pull-up in 
box A. (b) Slant-KL 95% reconstruction: the dipping events have been clarified, and the 
pull-up has been left intact. (c) Slant-KL 85% reconstruction: resolution has been lost, and the 
pull-up in box A has been smeared-out. 

latter point is of concern when data are being shunted from a mainframe computer 
to an auxiliary machine for processing. In the data examples processed to date, we 
can typically dispense with 70-90% of our required storage space. 

MULTIPLE SUPPRESSION I N  C D P  O R  C M P  SEISMIC DATA 
For the purpose of multiple suppression, we utilize the energy packing property of 
the KL transform. The idea here is to segregate the energy associated with the 
multiples onto a single principal component. A data reconstruction omitting that 
principal component should be essentially multiple-free. 

We proceed in five basic steps: 

1. 

2. 

From a velocity analysis, identify the stacking velocity and onset time associated 
with the observed multiples. 
Using this stacking velocity, apply a constant velocity normal moveout correc- 
tion to the data. At this stage the arrivals due to multiples have been more or less 
flattened, whereas the primary events are under- or over-corrected, and have 
increased curvature in the section. 
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Compute the KL transform of these moveout-corrected data. Correlated multiple 
energy in the CMP gather now appears predominantly on the first principal 
component. 
Reconstruct the NMO corrected CMP gather from the principal components omit- 
ting the first principal component, i.e., leave out any correlated energy associated 
with the multiples. It may also be advantageous to omit the second principal 
component when the waveform of the multiples has been severely distorted by 
interfering primary events, or by the NMO operation. 
Remove the moveout stretching from the reconstructed data using the same 
velocity as in step 2. 
This method is similar to the standard FK filtering technique. However, the 

alternative approach described here will not be as prone to the wrap-around prob- 
lems encountered with the FK method. 

Synthetic data examples 
In fig. 6a, we show a simple synthetic seismic section representing reflection events 
from nine flat layers over a half-space, all overlain by water. Included are two events 

RMS VEL i r n / s )  

Fig. 6. (a) The seismic representation of reflections from nine layers overlying a half-space, all 
overlain by water. The data have been muted and Acc’d. Two water bottom multiple events 
can be seen: the first at 1.10 s and the second at 1.65 s. (b) The velocity analysis of the data. 
Note the peaks due to the multiples with a velocity of 1450 m/s which dominate the lower 
portion of the velocity analysis. (c) Stack of the first half of the velocity analysis map (b). As 
multiple events tend to lie vertically in the velocity analysis map, they will stack to produce a 
maximum. 
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Fig. 7. (a) A data window after move-out correction with a constant velocity of 1450 m/s. 
Note the flattening of the multiple arrivals. (b) A misfit reconstruction of the NMO corrected 
data omitting the first two principal components. Some residual noise remains in the loca- 
tions formerly occupied by the multiple events, but this is largely incoherent, and will not 
stack to produce a noticeable effect. 

due to ‘multiple ’ travel paths in the surficial water layer (indicated by arrows). 
Figure 6b shows the semblance velocity analysis (Neidell and Taner 1971) of this 
data. We see ‘multiple’ energy at 1.10 arid 1.65 s with a characteristic velocity of 
1450 m/s. In fig. 6c, we show a stack of the velocity map: this highlights the velocity 
associated with the multiples, and is used to decide upon the NMO velocity for 
multiple suppression. Figure 7a shows the data after a constant velocity NMO correc- 
tion. Note that the multiple events at 1.10 and 1.65 s are now flattened. 

Applying the KL decomposition to the data window 1.00-1.80 s, and reconstruct- 
ing (omitting the first and second principal components) gives the results in fig. 7b. 
The result of this latter procedure is then Un-NMO’d to yield the data of fig. 8a. A 
velocity analysis of the un-NMO’d data after multiple suppression processing is 
shown in Fig. 8b. By comparison with fig. 6 the multiples have been effectively 
removed from the data. Figure 9a shows the multiple suppressed CMP gather after 
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SECTION AFTER MULTIPLE SUPPf 

Fig. 8. (a) The processed CDP gather after it has been un-NMo'd. (b) The velocity analysis of 
the data after multiple suppression. Note that in the absence of multiples the primary stack- 
ing velocity profile can be more readily discerned than in fig. 6b. 

Fig. 9. (a) The multiple-suppressed data after normal moveout correction using a velocity 
function picked from fig. 8b. The residual events remaining from the multiples can still be 
seen, but these do not stack constructively. (b) Three versions of a stack of the data: (1) the 
stack of a synthetic data set produced without multiples: this is our desired, or optimum 
result; (2)  the stack of the data in fig. 6a after NMO correction. Notice the multiple arrivals at 
1.10 s and 1.65 s which stacked constructively; and (3) the stack of the multiple suppressed 
data in fig. 8a after NMO correction. In comparison with (2) note the absence of multiple 
events. 
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NMO correction using the stacking velocity profile of fig. 8b. In fig. 9b, we see a 
comparison of the trace resulting from: 

(a) the stack of the ideal data which do not contain multiple arrivals; 
(b) the stack of the data with multiples; and 
(c) the stack of the data after multiple suppression using the KL technique. 

A comparison of the stacked traces in figs 9b(2) and 9b(3) shows that the multi- 
ples at 1.10 and 1.65 s have been successfully suppressed. The noise introduced into 
the section after removal of the first two principal components (fig. 7b) did not stack 
constructively. 

Real data examples 
Of greater interest is the performance of the algorithm on real seismic data when 
multiples pose a problem. Figure 10 shows a CDP gather of marine seismic data. 
Each gather has 60 traces sampled at 4 ms, but for this example, only every third 
trace was used. Figure l l a  shows a broad-velocity-band velocity analysis of the 
gather. We see a dominant trend of multiple energy at 1620 m/s starting at 0.50 s. 
Figure l l b  shows a stack of the velocity analysis map, highlighting the presence of 
the multiples: this information is used to decide upon the ‘multiple’ stacking veloc- 
ity. Figure 1 lc  shows the velocity analysis of fig. 10 after multiple suppression using 
a constant stacking velocity of 1620 m/s. Note the absence of the band of multiple 

Fig. 10. A marine CMP gather after bandpass (5-55 Hz), muting, and applicationof an AGC. 



28 I .F .  J O N E S  AND S .  LEVY 

SEMB. RMS V E L  (rn/s)  SEMB. RMS VEL (rn/s) 

1500 2000 2500 1500 2000 2500 

Fig. 11. (a) Velocity analysis of the data in fig. 10. Note the vertical trend of energy at 1620 
m/s due to water bottom related multiples. (b) The stack of the velocity analysis map above. 
The maximum at 1620 m/s was used as the multiple NMO velocity. (c) The velocity analysis 
map of the section after multiple suppression. Note the absence of energy at 1620 m/s after 
0.5 s, and the enhancement of the primary arrival peak at 2.2 s with velocity 2400 m/s. 

reflections between 0.50 and 3.40 s. Note also how the event at 2.20 s and 2400 m/s 
has been enhanced in the multiple-suppressed velocity analysis; it is no longer 
obscured by arrivals due to multiple travel paths. 

Twenty gathers of data were processed in this way, and a comparison of the 
conventionally stacked data with a stack of the multiple-suppressed data is made in 
figs 12a and 12b (here, two principal components were discarded in the 
reconstruction). The most noticeable differences between the multiple-suppressed 
stack and the conventional stack are the absence of the event at 0.91 s (marked A) in 
the multiple-suppressed section, which appears as part of a ‘doublet ’ in the 
unprocessed data, and the changes at 1.35 s (B). Several events are clearer in the 
multiple-suppressed section, such as that at 0.86 s (C), the trough at 1.10 s (D), and 
the pair at 2.45 and 2.55 s (E). Subtracting these two sections yields a difference 
section (fig. 12c) which emphasizes the location and nature of the differences 
between the processed and unprocessed data. Bands of multiple related energy are 
seen with 0.44 s spacing. 
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(b) 

Fig. 12. (a) The stack of 20 gathers. (b) The same stacked section after multiple suppression 
using the velocity of 1620 mjs. Note the absence of the event at 0.91 s (A) and changes at 
1.35 s (B). Also note the enhancement of events at 0.86 s (C), 1.10 s (D), and the pair at 2.45 s 
and 2.55 s (E). (c) The difference section (stack minus stack after multiple suppression) to 
emphasize the location and nature of the differences between the processed and unprocessed 
data. Bands of energy associated with the multiples appear at about 0.44 s intervals, indicated 
by the arrows. 

DISCUSSION 
The first section introduced the application of the KL transform to the recovery of 
coherent information for image enhancement of stacked seismic sections. The 
stacked section reconstruction technique has proved very successful so far (Jones 
1985), and has been applied extensively to real data in industrial processing. Its 
main advantage is the ability to greatly reduce the background level of incoherent 
noise, which is often prevalent early in a seismic section. The choice of a suitable 
reconstruction energy is subjective, but for most of the data examined, 9&95% 
reconstructions give reasonable results. Dropping the reconstruction energy below 
90% results in loss of resolution, as seen in many of the 85% reconstructions 
presented. 

As the covariance matrix is ‘tuned’ to isolate events with a preferred dip direc- 
tion, there is a problem when conflicting dips are present. To partially circumvent 
this problem, the data are broken into blocks of about 100 traces in width, and a 
few hundred milliseconds in depth, for KL decomposition. The final reconstructed 
section is a montage of these smaller segments. However, when there are widely 
varying dips within a small block, the method attenuates events with dips that differ 
most from the one preferred by the covariance computation. 

In data compression for storage and transmission, the transform has a singular 
usefulness, in that we can represent the data almost exactly with only a fraction of 
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the information otherwise required. The reduction in cost, especially when trans- 
ferring data from a mainframe computer to a work station, can be significant. 

Multiple arrivals often pose a serious problem in shallow water and certain land 
environments. Simple and effective methods for the elimination of multiple events 
can alleviate these problems. Here we present an intuitively simple method for 
isolating and removing multiple events prior to final moveout correction and stack. 
On simple synthetic data (layered-earth-model) the method works well. On the 
small sample of real data analysed, the velocity analysis maps highlight the almost 
complete absence of multiple-related energy after processing. Primary events which 
were of small amplitude in the velocity analysis map before processing were also 
enhanced, because the actual data hyperbola corresponding to the primary event 
was no longer masked by multiple energy arriving at the same time. 

The results on the basis of ‘before and after’ velocity analysis maps look very 
promising. Initial tests on 20 gathers show several noticeable differences and their 
velocity analysis maps show that a significant number of multiple events have been 
removed. Also important is that the actual waveforms are essentially uncorrupted 
by the processing. 
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A P P E N D I X  A 
The energy of the principal components 

Given the data matrix X = {xi( t ) ,  i = 1, . . . , n>, where the seismic traces xi(t) are the 
rows of X ,  we firstly compute the covariance matrix r, for the data 

r = XXT (All 
(it is understood that the ith row of a matrix X contains the digitized version of a 
function xi(t)). 

We may reduce r to its diagonal form by means of a spectral decomposition 

r = RART, 

where R is the matrix of column eigenvectors rj, and the diagonal matrix A contains 
the eigenvalues A I ,  A,, . . . , Aj, arranged in decreasing size. 

Further, using singular value decomposition (SVD) we may write 

X = RCIVT, (-42) 
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where Q is a matrix containing the singular values of the decomposition along its 
main diagonal, with zeroes elsewhere. 

Using (A2), (Al) becomes 

r = R Q V ~ V ~ ~ R ~ ,  

r = ~ f i a ~ ~ ~ .  

and as both R and V are in general unitary, this becomes 

Now, we constructed the principal components Y = {$j(t),j  = 1 

Y = RTX 

and using (A3) and (A2) we also have 

wT = R ~ X X ~ R ,  

= R * R Q V ~ V ~ ~ R ~ R ,  

= anT = A. 

n}  as 

(A31 

The matrices R and A are both [n  x n]. However, for our n traces each of N 
points, we have that X = [n x N I ,  Q = [n x N I ,  and V = [ N  x N I ,  but for n < N ,  
we only have at most n non-zero eigenvalues in the diagonal matrix a. Hence 
can fully represent o (i.e., thejth element of a, which is [n x NI) .  

So we see that A is simply the covariance matrix of the principal components, 
i.e., A j  is the energy content of the jth principal component. Furthermore, trace [A] 
is the total input energy, i.e., 

xi(t)’ dt = trace [r]. 

A P P E N D I X  B 

The slant-KL transform 

For laterally well-correlated data (as in stacked sections corresponding to a hori- 
zontally or near horizontally layered earth), we need few principal components to 
adequately reconstruct the data (i.e., E(m) N 100% with m < n (6)). 

This latter statement may be extended to parallel dipping events by a simple 
modification of the covariance matrix r, i.e., we adjust r so that it represents 
preferred time lags, corresponding to some desired dips. 

This end is achieved by redefining the covariance matrix r as 

r = [xi(t)xi(t - A(i - 1)) dt, 

or equivalently, by producing a new data set yi(t) such that 

yi(t) = 8(t - A(i - 1)) * xi(t), (B2) 
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where 6 is the Dirac delta function, A is the dip of the beds expressed in time 
samples per trace, and ‘ * ’  denotes convolution. A can be positive or negative, 
depending on the dip direction. We refer to the KL transformation applied to the 
modified data set yi( t )  as a ‘slant-KL’ transform. 
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