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ABSTRACT

The Karhunen-Loéve transform, which optimally extracts coherent
information from multichannel data, has been applied to several
problems in reflection seismic data processing. The transform 1is
derived by a least-sQuares construction of an orthogonal set of
principal components and eigenvectors, with corresponding
eigenvalues. Data are reconstructed as a linear combination of

the principal components.

The mathematical properties of the Karhunen—Loéye transform
which render it applicable to problems in seismic data processing
are reviewed, and a number of new algorithms developed. Most
algorithms are tested on synthetic and real data examples, and
'production-line' industrially viable versions of some of the

programs have been developed.

A new signal-to-noise ratio enhancement technique, based on
reconstruction of stacked seismic sections, has proved to be
successful on real data. Reconstruction of 1less coherent
information to emphasize anomalous features in stacked seismic
data ("misfit" reconstruction) shows some promise. Diffractién
hyperbolae isolated by misfit reconstruction are used to estimate
residual migration velocities with some success. And, the ability
of the transform to segregate coherent information 1is wused
successf;lly as the basis of a new multipie suppression

technique. An anomaly identification scheme, based on cluster

11



analysis of the eigenvectors of the transform, works well on the
synthetic data used, and gives promising results when applied to
real data. A new velocity analysis method, utilizing a ratio of
the eigenvalues, works well for good data at early travel times,
and offers a potential for high resolution velocity inversion
studies. Use of the eigenvalues in evaluation of a constant phase
approximation to dispersion for synthetic data provides promising
results, leading to quantification of dispersion in terms of
relative phase shifts. As part of this development, an analysis
of the effect of dispersion on Vibroseis® data acquisition, which

represents an original investigation, 1s presented.
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CHAPTER 1.

INTRODUCTION.

SECTION 1.I: GENERAL INTRODUCTION,

v

The Karhunen—Loévé transform has long been known and well
utilized in the image processing field (Ahmed and Rao, 1975);
however, in geophysical data processing, applications to date
have been scant. In this thesis, my objective is to introduce and
exemplify the Karhunen-Loéve transformation to the seismic data
processing community as a viable method for addressing several
problems in multichannel seismic data processing. The ‘basic tenet
behind this work 1is that wusing the Karhunen-Loéve transform,

seismic data possessing linear trace-to-trace coherency may be

projected into a space where the coherent information is
compressed into the smallest possible number of ‘'alternative
data' traces. This compression separates the correlated from

uncorrelated parts of the input data. I exploit this separability
feature to improve existing seismic processing technigues, and to
form the basis of new multichannel seismic data processing
techniques. Several of the topics in this thesis are pfesented
here for the first time, while others have been mentioned in
existing literature, or 1in recent articles on which I am

co-author.,



2

My attention. was originally directed vto' this topic by
S. Levy and T.J. Ulfych; who with D.W. Oldenbufg and myseif have
been-in§estigating the usefulness of the Karhunen-Loéve transfofm
iﬁ “the framewofk of a more general inversion approach to seismic
data processing. Initially, my interest in the Karhunen-Loéve
transform (referfed to in the remainder of this work as the KL
transform, or the KLT) focussed on its ability to quantify
similarity between waveforms. This interest arose as I was
interested in the problem of the quantification of dispersion in
seismic body-wave data, and the subsequent correction of
dispersive effects. Subsequently, my interest shifted more
towards the application of KLT to various other problems.
However, evidence of the initial thrust of my thesis 1is té be
found in the coverage given to that problem in the Q-inversion
section of Chapter 4, and 1in the developments concerning the
effects of dispersion on the choice of bandwidth for Vibroseis®

data (Appendix 2).

As the majority of interest 1in this work is within the
industrial seismic data processing community, one of my goals has
been to produce a viable 'production-line' processing package for
each of the applications investigated. However, some of the
applications, although they proved to be promising on synthetic

data, have not proved as powerful for real data examples.

Some applications of the Karhunen-Loéve transform were

presented by myself on behalf of my co-authors at the 1983 Annual



International Meeting of the Society_of Exploration Geophysicists
(SEG) iﬁ Las Vegas, Nevada,'USA..A manuscript in preparation on
multichahnel applications (Jones and Levy, 1985) was presented at
the 1984 Annuél»lnternational Meeting of the European Association
of Exploration Geophysicists in London, England, by my co-author,
S. Levy. A brief feview of some of the work considered here and
elsewhere by co-workers and myself was given by D.W. Oldenburg,
at the 1984 joint meeting of the Canadian Society of Exploration
Geophysicists (CSEG) and Canadian Society of Petroleum Geologists
(CSPG), in Calgary, Alberta, Canada, and also at the SEG Seismic

Deconvolution Workshop in July 1984, in Vail, Colorado, USA.

To 1introduce the reader to the background of the KLT, the
problems I consider, and the application of the KLT to those
problems, the body of this thesis is divided into fbur major
sections:

1. An 1introduction to previous work using the KLT in other
fields, and to the subsequent sections considered here (Chapter
1);

2. A theoretical introduction to the various aspects of the
KLT outlining the well established theory from the literature,
and introducing the physical insights behind each of the
applications considered here (Chapter 2);

3. Applications of the method to synthetic multichannel
seismic data sets, and to multichannel field data, with reference

to the relevant theoretical development (Chapters 3 and 4); and



4, An assesment of the usefulness and limitations of the

method in each of the applications discussed (Chapter 5).

SECTION 1.1T: REVIEW OF PREVIOUS WORK.

In this section, I 'review the previous work 1in the
literature on orthogonal transforms, and more specifically, the
expansion of multichannels  of data in terms of orthogonal

transforms.

a. Orthogonal Expansion of a Function.

The best known, and earliest treatise on orthogonal
“transforms was that of Fourier, who asserted that a function
which met certain broad conditions (specified by Dirichlet; see
Kanasewich, 1982) could be expressed as a linear combination of
sinusoids. This approach was later generalized to the
representation of an arbitary function by linear combination of
orthogonal non-sinusoidal functions. For example, Walsh (1923)
introduced a set of squére—wave—like orthogonal functions, and
several other functions were also devised (e.g. the Rademacher

functions, Beauchamp, 1975).

Hotelling (1933) was one of the earliest workers to begin to
utilize the more general approach 1in the quise of factor, or
principal component analysis. His interest was in classifying

psychological test scores; hence his data consisted of



multichannels of discrete values. -

These vmethods first appeared in the signal processing
literature when "Karhunen (1947) expanded replications of
_ single—channel stellar line-spectral data into a suite | of
orthogonal functions. His approach was formalized by.Loéve (1948,
1955), who treated the derivation of the transform in ab rigorous
statistical sense, and the term Karhunen-Loéve transform then
appeared in the literature to compleménf the terms Hotelling and

principal component transforms.

b. Orthogonal Expansion of Multichannel Data.

The Karhunen-Loéve transform was defined to statistically
describe the expansion of a suite of realizations of a single
function as an infinite sum of orthogonal functions. As a
corollary to this, several workers explored the possibility . of
simultaneously expanding multichannels of data in terms of the
same set of orthogonal functions. In the multichannel case, the
covariance matrix of the data is décomposed, and for n channels
of data (continuous or discrete) we need (at most) n orthogonal
functions for an exact representation. If the original functions
comprising the multichannel input are not linearly independent,
then they could presumably be represented by a subset of the

orthogonal functions.



The‘first.workers to demonstfate the development of the
transforﬁ -f6r  multichannel data using a matrix aigebra_approach
were Kramer and Mathews (1956) who applied their procedurés to
speech analysis and data compression prior ‘to ﬁelegraphic
transmission. In fact, the speech processing and telegraphic
communications communities were the first groups to fully explore

and exploit the usefulness of the KL transform.

Young and Huggins (1962, 1963) and Christensen and Hirschmaﬁ
(1979) subsequently utilized the multichannel data approach to
extract the underlying signal forms from a suite of
electrocardiograph signals. Young and Huggins (1962) and Young
and Calvert (1974) also refer to the method in its multichannel
form as Intrinsic Component Analysis. Also, Gubbins et al. (1971)
investigated the wuse of Haar and Walsh functions in filtering

techniques.

Watanabe (1965) gave a comprehensive overview of the
transform, showing how it could be derived not only in a
least-squares sense, as was done independently by Kramer and
Mathews (1956), but also in a way which minimized the entropy of
an objective function. He also elucidated the salient differences
between faétor, or principal component analysis (which was
developed with discrete data in mind) and the KL transform, which

was derived for a continuous function,



A succinct definition.of the transform coiﬁed by Watanabe:
reads as follows:

"The K-L-expansion ié usually known as one which

minimizes the average error comhitfed by'ﬁaking only a

vfinite number of terms in the iﬁfinite series of an

expansion when a given qéllection of functions is to be

expressed as a series in terms of somé complete set of

orthogonal functions."

In the same year, Papoulis (1965) presented the method as
that which, 1in a least-squares sense, 'optimally' transformed a

vector or suite of vectors into a complete orthogonal set.

After further work on pattern' recognition - and feature
selection (Chien and Fu, 1967) and a proposed modification to the
method (Fukunaga and Koontz, 1969), use of the method in the
image processing field became widespread (Pratt, 1970; Ready and
Wintz, 1973; Pelat, 1974; Ahmed and Rao, 1975; Andrews and
Patterson, 1976 a, b, and c¢c; Jain, 1976, 1977; Lowitz, 1978;
Mallick and Murthy, 1984). According to Young and Calvert (1974),
the application of the KL transform to feature extraction was due

initially to Chien and Fu (1967) and Watanabe (1965).

Ahmed and Rao (1975), in their book on the applications of
orthogonal transforms to digital image processing, review most of
the above mentioned techniques and applications. They wuse the

definition of the Karhunen-Loéve transform as applied to the
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decomposition of the covariance matrix of an image when described

‘as a series of row vectors.

Throughout this work I will be dealing with multichannels of
data, and will use the term 'Karhunen-Loéve' (KL) . transform to
mean the- expansion of such data via diagonalization of its

covariance matrix.

c. Geophysical Applications.

The first geophysical application of the method was the
investigation by Hemon and Mace (1978) of the ability of the
transform to extract a common signal from a set of move-out
corrected CDP traces as an alternative to conventional stacking.
They demonstrated, with synthetic examples, how the effects of
Gaussian noise and of trace-to-trace static time shifts were less
troublesome to the KL approach than to the conventional stacking
method. However, their paper was published in French which
unfortunately led to their work being overlooked by a large

segment of the geophysical community.

Tjostheim and Sandvin (1979) employed the KL transform, in
conjunction with auto-regressive methods, to distinguish between
underground nuclear explosions and large earthquakes. They
claimed success on the basis of the difference in number of
orthogonal functions needed to represent the records of an

earthquake as opposed to a nuclear explosion.



Milligah et al. (1978) analeed'140,000 acoustic_'pingér'
‘recbfds in énbattempt to discriminate water—bdttom sedimenf _£Ype
‘on' the basis of seismic pulse character; Using 1.8 ms of data,
‘the aligned bottom 'ping' records were _decombosed into their
representétive orthogonal vectors. Depénding upon which subset of
orthbgonal vectors cbuld be used to represent the ping from a
given locale, they were'ablé to gfoup locales into regions which
proved to be representative of bottom-sediment type. In a later
péper,‘<the same group . (LeBlanc and Middleton, 1980) used the
method to investigate the similarities between underwater sound

velocity profiles on an ocean-wide scale.

Under the guise of principal components analysis, Hagen
(1982), working with thé instantaneous phase (Taner et al., 1979)
of his data, used the technique of cluster analysis (on the basis
of the transformation's amplitude coefficients) to group seismic
traces into 'natural' clusters. His hope was that in conjunction
with well-log control, these clusters could be related to
porosity. Hence, a glance at a trace clustering 'map' for
adjacent wundrilled areas would enable an interpreter to discern

the likely locations for oil and gas accumulations.

d. The Work of the U.B.C. Group.

More in 1line with the signal extraction and coherency
aspects of the method, Ulrych et al. (1983) presented a series of

applications in the geophysical signals processing field. They
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concerned themselves with wavelet extraction from both move-out
hYpefbolae and single channels of data. They also carried out
stacking and velocity analysis using “the eigenvalues of .the
transform to construct a similarity measure to replace the

' conventional semblance criterion (Neidell and Taner, 1971).

Levy et al. (1983) 1in a companion paper extendea the KL
method to deal with complex signals. This allowed the authors to
addreés the problem of phase changes in the seismic waveiet. They
produced enhanced stacks of move-out corrected CDP gathers for
synthetic data, and also parallelled the new Qelocity analysis
approach introduced by Ulrych et al. (1983). Utilizing the
diagnostic features of the transformation's amplitude
coefficients (as in <cluster analysis), they developed . a
'dead-trace' detection routine to discriminate against unusually
different seismic traces to avoid degradation of the final
results when, for example, stacking or performing velocity
analysis. Extending the versatility of the complex KL method even
further, they extracted phase information from sets of common
signals for synthetic data, and in the <case of super-critical
reflections from a fluid-fluid interface, were able to invert
phase and velocity information to recover density contrasts

across an interface.

In a more recent work, Chapman et al. (in press) wutilized
these procedures to extract density contrast information from the

relative phase changes observed in super-critical reflections
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within Arctic abyssal plains sediments.

On the papers by Chapman et al. (in press), Ulrych et al.
(1983), and’tevy et al. (1983), I am'a co-author. The wvelocity
analysis and constant phase apprdximation for dispersion
components from the latter two papers comprise part of this
thesis. It 1is from my work on these two papers and further
discussions with S. Levy, T.J. Ulrych and D.W. Oldenburg, that

this thesis evolved.

As mentioned previously, the originél thrust of this thesis
was an investigation of dispersion and its guantification using
sensitive similarity measures. From this, the KL method grew to
be the central theme of this work. A significant amount of time
- was devoted to the possibility of estimating the seismic quality
factor @, assuming the constant-Q model (Futtermann, 1962) and
utilizing the eigenvalues of the KL method to define a similarity
. measure. An overview of the quantification of Q values, the
constant-Q model, and the effects of dispersion on seismic source
signals 1is given in Section 4.III and Appendices 1 and 2,

respectively.
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SECTION 1.III: SEISMIC DATA RECONSTRUCTION.

a. Reconstruction of Coherent Information.

Given a stackea seismic section from a region of relatively
flat-1lying or parallél dipping 1layers, the changes seen frém
trace to trace across the section are 1in part structurally
related and in part random noise. I will assume that the
contributions from random events are not correlated from trace to
trace, whereas the data representing the geological horizons will
be. In view of these assumptions, I enquire whether we can
separate those parts of the data which display trace-to-trace

coherency from those parts which do not.

As will be shown in the next chapters, the KLT enables us to
separate the most coherent parts of the data from the less
coherent parts. The method replaces a set of seismic traces with
an equal number of alternative (and orthogonal) data traces
(known as the principal components), which are arranged in order
of decreasing variance (or energy content). The first principal
component contains that signal which is most common across the
stacked seismic section. The subsequent principal components can
either be viewed as the next most common signals, or as the
'correction terms' to be added to the common sighal to reproduce
the 1input signals. Reconstructing the original stacked seismic

section from those principal components which account for the
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- greatest'variance_will,producé a seismic section from which the

léast coherent information has been omitted,

This truncated seismic data reconstruction method has not
been . presented previously in the seismic literature, although it

forms the basis of many image enhancement techniques.

b, Misfit Reconstruction.,

As a natural adjunct to the reconstruction of coherent
information, we may ask the following question: What do we have
if we perform a reconstruction using the least coherent
information present? The answer is simply that we then have those

parts of the data which are less common from trace to trace.

For example, 1in the case where we have a background of
similar flat-lying (or parallel dipping) events upon which 1is
superimposed some small-scale structure such as a sand lens, or
pinch-out, we may try to remove the common features in order to
highlight the anomalies. A technique such as this would draw
attention to regions which may warrant further investigation. For
display purposes, the anomalous parts of the data could be
plotted in grey-shades on top of a wvariable area plot of a
reconstruction of the original data in order to produce an

'anomaly-highlighted' section.

This technique, which I call anomaly or misfit

reconstruction, has not been presented previously in the
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seismological or image processing literature.

C. Diffréctions.

Whilst performing reconstructions of stacked seismic data, T
noticed a most interesting feature. In areas with much faulting,
the misfit recoﬁétruction highlighted the diffraction hyperbolae
associated with fault 'edges. The fact that a migrated stacked
section still incorporates some diffraction energy indicates that
residual migration may be in order. Further, migrating the
diffraction section (a misfit reconstruction showing
diffractions) itself may produce a section with events
concentrated near the diffraction sources: this could serve for

example as a fault-edge indicator.

This serendipitous application 1is new, although the
separation of diffraction events from stacked seismic sections by

other means is not (Levin et al., 1983, Harlan et al., 1983).

d. Multiple Suppression.

In shallow marine seismic data, multiples often pose a
problem. The multiple events all have approximately the same
move-out velocity, and often distort the information of interest.
Performing a constant velocity move-out correction on a multiple
infested common depth point (CDP) or common shot point (CSP)

gather using the velocity of the multiple, we produce a gather in
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which the 'multiple' events are essentially flattened. In other
words they will then appearito'be the most coherent information

in the gather.

A KL reconstruction omitting the most cbmmon information
will‘producé a gathervfree of multiple arrivals. The gather would
then be un-move-out corrécted with the same constant velocity.
Naturally, the processing would commence just after the primary

event so as not to suppress it.

This novel approach to multiple suppression is presented
here for the first time. It constitutes an alternative approach
to that of Ryu (1982) who proposed a procedure using

frequency-wavenumber filtering of move-out altered gathers{

SECTION 1.IV: SIMILARITY MEASURES.

In the previous section it was mentioned that the KLT
produces a set of orthogonal principal components from the input
data traces. As shown in the theory sections (Chapter 2), these
principal components are constructed as a linear combination of

the input data traces (and vice versa for data reconstruction).

In this section, I will introduce the physical significance
of the weighting coefficients used in these linear combinations.
As we will see, these weights are the -elements of the

eigenvectors of the covariance matrix of the input data traces.
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a. Cluster Analysis.

When constructing, for example, the first principal
component, we will have a set of weights which will tell = us how
much of each input trace goes into making the first principal

component.,

If the first dozen weights had thé same value, then we would
conclude that the first dozen input traces contributed equally to
the first principal component. If the second dozén weights were
similar to each other but differed radically from the first
dozen, we could infer that we had two 'natural' similarity groups
of input data traces, characterized by the first and second dozen

input data traces, respectively.

By studying the groupings of the weilghting elements
associated with the KLT, we can form a basis for identifying
groups, or clusters, of input signals which were similar. One of
the major aims of such an analysis would be to link the resulting
groups of input traces to a physical parameter, eg. porosity,

noted from attendant well log information.

I review the approach taken by Hagen (1982) and critically
assess the applicability of cluster analysis in the context of

seismic exploration.
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b. Velocity Analysis.

The energy of the j.th principal'component is given by the
j.th eigenvalue of the input data covariance matrix. Further, if
that signal most common to the input data hésva_comparatively
large energy, then we can say that the input data traces are all

very similar.

Consequently, a ratio of the first eigenvalue to the sum of
the remaining eigenvalues gives a measure of the distribution of
~the total variance between common and uncommon parts of the input
data. This eigenvalue ratio, which I later modify to be the ratio
of a sum of the first m eigenvalues to the sum of the remaining

eigenvalues, can be used as a similarity measure.

Under certain circumstances, this similarity measure proves
to be more reliable than the conventional semblance criterion
(Neidell and Taner, 1973), especially in the presence of small
time shifts between the members of the suite of input signals
under consideration. I present the modified eigenvalue ratio as
an alternative to the semblance criterion wused 1in velocity
analysis. The 1initial results of this investigation were

presented in Ulrych et al. (1983) and Levy et al. (1983),
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c. O-Inversion.

In a. procedure similar to  the application to wvelocity
analysis, I utilize the eigenvalue ratio to quantify . the
similarity bétween.a'dispersed signal and é reference signal.
Utilizing the Futtermann (1962) relétioﬁship (which relates the
change in phase velocity to the Q-value for a mediﬁm; Knopof £
(1964)), the dispersed signal is iteratively undispersed. That
is, at each 1iteration, the signal 1is first subjected to a
frequency dependent stretching designed to negate the effects of
dispersion. This undispersed signal is used, in conjunction with
a reference signal, to compute the value of the eigenvalue ratio
for the pair of signals. The change 1in magnitude of the
eigenvalue ratio will give an indication of how similar to the
reference signal the processed signal has become. By 1identifying
a minimum in the function of eigenvalue ratio versus undispersing
Q-value, I try to identify the @-value of the medium in which the

seismic wavelet travelled.

In addition to the application of the KL eigenvalue ratio to
similarity quantification, an overview of the constant Q model,
and of the effects of dispersion on Vibroseis® data is presented
(Appendices 1 and 2). In Section 4.II1, I present an iterative
dispersion removal technique for synthetic data from an impulsive

source function. This extends the work of Robinson (i979, 1982)
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‘who attempted to remove the effecté of dispersion from seismic

data in an ad hoc fashion.

Within the body of this thesis, all figures are collated at
the end of the pertinent section, so as not to interrupt the

text.
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.CHAPTER 2,

THEORY AND BACKGROUND.

SECTION 2.I: THE KARHUNEN-LOEVE TRANSFORMATION.

a. Introduction.

In this chapter, I present the theory from the literature,
and outline the physical interpretation of this theory as applied
to problems in reflection seismology. I will be dealing with the
KL transformation as applied to multichannels of data (Ahmed andb
Rao (1975), Ulrych et al. (1983), Levy et al. (1983), Jones and
Levy (1984)) and begin by défining the terminology to be used in

this work.

b. Theory.

Given a set of n real signals xi(t), 0 <1t £ T, and an [nxn]
transformation matrix A4 with elements aij’ we may construct a set

of alternative data as a linear combination of the input data:

[T g -

wj(l) = a. . xi(z) j=1,...,n; 0 <1 =T (1)

)

i=]

Conversely, we may reconstruct the input signals as a linear

combination of the vectors ¢j(l), with weights bij of a matrix B:

n .
xl.(t) = Z bl.j. wj(z) i=1,...,n (2)
=]
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We may derive the coefficients aij_and bij in a numbe r of‘ 
ways (Ulrych et al.; 1985, in prep.). .However,‘ use of the
least;equaree method gi§es rise to a set of orthogenal vectors
wj(z),_arranged in order of decreasipg energy content, i.e. the
signal with the largest variance will appear on y,;(r), and so on.
This approach was taken by Kramer and Mathews (1956) who .showed
that the coefficient matrices 4 and B for that transform which
packs the greatest possible amount of cdherent information into
the smallest possible number of vectors wj(l), are simply 4 = R
and B = R, where R is the eigenvector matrix derived from the
covariance matrix of the input data (in the notation of Kramer

and Mathews, my 4 would be transposed).

Their result can be shown as follows. Defining a truncated

data reconstruction as:

X. (1) =

{

M3

bﬁj'wj(Z) i=1,...,n; m < n (3)

j=1

we have an associated misfit (or truncation error):

¢(m) = g igl (x,(t) = %, (1))? di (4)
T n m
= £ 1_7;31 (x; (1) - jEI by \I/j(z))2 dt
T n m n
= é ii} (x; (1) _'jEI kEI by @ x, (1))? di

Demanding that ¢(m) be a minimum for I < m £ n, we set the
partial derivatives of ¢(m) with respect to aij and bij' to zero.

For
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0 ob , h :
¢(m)/ b we have

T m n ,
a¢(m)/abpq = -2 é {xp(l) - jEJ kE] bpj akj xk(t)}
n
. { 1§] P x/(t)}_vdt
T n '
= -2 ,(g [ { 151 alq.'xp(t)x[ (t)}
m n .n
- { jEJ kfl 151 “ bpj @y x, (1) x, (1)} 1 di

But the integral over pairs of input vectors gives the symmetric

covariance matrix, i.e.:

T
Vo= £ X, (t) xj (t) di

So, we have:

a¢(m)/abpq = -2 [ { 1§1 Ypi ,q}
m n n
- { j§1 kEI 151 ap: 6o Y a[q} ]
Summing over [/ gives:
m n
a¢(m)/abpq = -2 [ (T A)pq - { j§1 kEJ @y bpj (r A)kq}

And summing over k and j gives:
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= - \ - T ‘
a¢(m)/abpq 2‘[ (r A)pq (B AT T A) j

Dropping the elément subscr;pts and transposing givgs:

AT T = AT T 4 BT | ' o (5)
Likewise,‘from setting a¢(m)/aapq =‘0, we obtain:

rB=T4B" B - (6)

To 1investigate the properties of 4 and B, we perform the

following steps:. Setting C = B A7, equations (5) and (6) become:

cr crcrt

rc rcrc

From the latter equation, we see that:

C = C'C, or transposing:
C'= C7C, thus:
C = C7, and hence:

C = C*?

In other words, C is diagonal with either ones or zeroes arranged

in some as yet unknown order along the diagonal.

Proceeding with a parallel argument for the - spectral

decomposition of I' in terms of R and A, we have the following:
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[= RART | S )
where R is the matrix of orthogohal column eigenvectors r., and

the diagonal matrix A contains the corresponding eigenvalues A,,

xz,;..,x”, arranged in decreasing size.

As C is also symmetric, we can write C = R Q@ RT where Q is a

diagonal matrix with rank equal to the rank of C (i.e. rank < m).

Now:

Q2 = RT CRR" CR
= RT C? R
= RT C R
= 0

Consequently, the elements of the diagonal matrix Q@ must either

be unity or zero.

In addition, we can also write equation (4) in terms of the
deviation of a forward and inverse transform from the original

data, i.e.:

¢(m)

Tracel(I - B AY) (I - A B7) TI']

Tracel[(I - C) T']

but as this only looks at the diagonal elements, we can equally

well rotate the argument into a diagonal form:



1

 ¢(m) = TracelR™ (I - C) R R" T R]

Tracel[ (] - RT C R) Al

Tracel (I - Q)A]

P
z L

j=m+1 J

where p is the rank of I'. But this representation of ¢(m) will
give a minimum when the sum extends over the smallest (p-m)
eigenvalues, and as the ordered eigenvalues correspond to the

ordered eigenvectors of R, we must have that:
Q=M
where M is an identity matrix of rank m, but:

C

R Q RT

R M RT

]

B AT

In other words, the first m columns of A or B correspond to the
first m columns of R. Hence the result of Kramer and Mathews
(1956) that A = B = R for m=n, and A = B = the first m columns of

R for m<n.

Consequently, a convenient way of solving this least-squares
problem is to first compute the outer-product covariance matrix

I', of the data xi(t):

r=xx7 . (8)
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where X'=={xi(z),'i=1,...,n};

~and proceed to diagonalize equation (8) via -equation (7) to
obtain the eigenvectors R. (Throughout this work it is understood
that a function xi(t) may be discretized so as to form the

elements of the i.th row of a matrix X).

With A4 and B thus chosen, the transformation pair equations
(1) and (2) define the multichannel Karhunen-Loéve (KL)

transform:

: n
(t) = L r..x.(t), =], n,
wj( ) ey P ) J
(9)
or $ = R T ¥x
‘and
n
x.(t) = Z r. .. (1), i=], n,
i i=1 ijrj
(10)
or X = R ¥

where r.
il

¢={wj(z), j=1,...,n}, and the vectors wj(z) are known as the

is the i.th element of the first column vector of R,

principal components of the transformation.

Further, the j.th eigenvalue kj gives the energy content of

the j.1h principal component, i.e.:
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B

; V(1) de - | L (11)

="

In other words, the eigenvalue matrix A is simply the covariance

matrix of the orthogonal alternative data wj(t):
A= % T . - (12)

Also, as the transformation is merely a spatial rotation, the
total input energy is conserved and we have:

T n
Tracel[l'] = § z X, (t)2 dt = Tracel[A] (13)

Due to the way in which the covariance matfix 1s calculated,
the principal component with the largest variance contains that
signal which 1is most highly correlated from trace-to-trace. In
other words, the first priﬁcipal component represents the 'common

signal'.

The underlying assumption in this work is that there 1is a
signal which is common to each input trace: our problem is to
extract that signal. In matrix terms, we assert that X has a
predominant signal component with a rank much smaller than n, the

number of input vectors.

If there were no trace-to-trace similarity (i.e. if the
x; (1) were orthogonal), I would be diagonal, and we would have:
T
v.(t) = x.(t), and A= x.(t)* dt.
J i | Joooy i

where the
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f(z)’are re-arranged in order of decreasing energy content (as

wj(f)) to meet the reQUirement that Ay > Ay > ... > kﬁ.

c. Singular Value Decomposition.

For most seismological applications>we-have many more pbints
per trace than we have traces; In this case 1t 1is .simple and
convenient to proceed as outlined above. However, in situations
where the number of traces far exceeds the number of points per
trace (Milligan et al., 1978) we utilize the relationship between
the KL transform and singular-value decomposition (SVD) to reduce

the computational expense.
Given the data matrix X, we may write:
X =RQVT (14)

where  is in general a rectangular diagonal matrix containing
the singular values of this decomposition, and V is the post
matrix, which is later seen to contain the normalized principal

components.

Now, we note from equation (8) that the covariance matrix T

for our data X is given by the outer-product:
r=xx° - (15)

RQVTV Q@ RT,

and as both R and V are orthogonal, this becomes:
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[= R Q2 R,
S50 we see that from equation (7) Q2 = A.

The matrices R and A are both [nxn]. However, for our =
traces each of N points, we have that X = [nxN], Q = [nXN], and
Vv = [NxN], but for n < N, tﬁe system is éverdetermined and we
only have at most n non-zero eigenvalues in the métrix Q. Hence

A‘/2 which is [nxn] fully represents 9 which is [nxN].

Now, 1if we had a case where the number of traces exceeded
the number of points in a trace, i.e. n > N, we may wish to form

the following inner-product covariance matrix:

r=x7%x (16)

=V Q2 yT

Here ¥V is the eigenvector matrix of T (both ¥ and ' are [NxN]);
recall that R <contained the eigenvectors derived from I'. We

constructed the principal components ¥ (equation (9)) as:
¥ = RT X (17)

where ¥ is [nxN]. Substituting equation (14) into equation (17)

yilelds:

4 RT RQVT

QvT (18)
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So we see that .the principal component matrix ¥, of I' is simply a
transposed scaled version of the eigenvector ‘matrix ¥V, of T.
Given ¥V and @ we may derive the eigenvector matrix R, of T:

equating equations (17) and (18) gives:
RT X =QVT,

which when rearranged becomes:
R=xVa! | | (19)
So, if we simply want the principal components, or if

n >> N, we decompose I, whereas if we are interested in the

eigenvectors R, or if N >> n, we decompose T.

d. Outer-Product Image Summation.

Here I present a reconstruction as a linear combination of
principal components with appropriate weights. However, following
the SVD approach, we may use the terminology of Andrews (1970)
and Andrews and Patterson (1976 a, b, c) and think of the data as
constituting an image matrix X (Davenport and Root, 1958; Huang
and Narendra, 1975; Hunt and Kubler, 1984; or Fukunaga and Koontz
(1969)). This image can be decomposed into a sum of rank-one
images, each of which is formed by an outer-product expansion.
That is, from equation (14):

n _

X = L XT/Z r
j=1 7

V7
JJ
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where each outer-product FjV; forms a rank-one image of the same
size as X. Photographs of several such rank-one decomposition

images can be found in Andrews (1970).

SECTION 2.II1: RECONSTRUCTION AND ASSOCIATED ERRORS.

a. Identical Signals.

When we have a suite of signals which are identical to
within a constant scale factor, the first principal component has
an important characteristic. if xi(t)=cis(z) where the c; are
real constants, and s(t) 1is a given signal, then the first

principal component will be:

Vi) = ¢,V ) (20)

1 s I

i=1

That 1is, the first principal component will be a scaled version
of the signal s(t), and the complete set of input signal vectors
{xi(t), i=1,...,n}, can be reconstructed exactly from this one
principal component and the appropriate weights (the elements of
the first row of R). The remaining principal components {wj(t),

j=2,...,n}, will have zero eigenvalues and are not needed in the

reconstruction,
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b. Similar'Signals.

If the suite of signals had faﬁdom noise or other
contaminants added to them, we . no longer havé the ideai_case
where the suite can be exactly represented by a single principal
component with appropriate- scaie factors. Rather, we may still
represent the suite with a single principal component and acceéept

. the introduction of some error.

In equation (11) we noted that the j.th eigenvalue gives the
energy associated with the j.th principal component. With this in

mind, I define a similarity measure:

m n .
x(m) = Z AN,/ z AL (21)
j=1 j=m+1
For the 'identical' case with A,, A5, ..., kn = 0 we will have:
x(m) = o=, m= 1,2, ...,n-1.

Of more physical significance is the case when the waveforms
are similar, and contaminated with noise. In this case, x(m) will
be large. Conversely, for inherently dissimilar signals (or white

noise) with the same mean energy, we would have:

x(m) = O{m/(n-m)}

In other words, 1if all the signals were dissimilar, then the

covariance matrix would be mostly diagonal, and all the
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' eigenvalues would be of the same magnitude, hence ‘equarion (21)

would yield a result of order {ms(n-m)}.

This modified eigenvalue ratié (EVR) x(m), is analagous. to
the condition number (Strang, 1980), and is used throughout this-

work as a measure of signal coherency.

c. Winnowing and Truncation Error.

For the truncated inverse transformation (equation (3)) we
must decide wupon a criterion to determine how many principal
components to use in order to satisfactorily reconstruct (or
represent) the data. We may discard principal components m+l to n
given that the bulk of the energy is packed into. the first m
principal components. However, this approximation gives rise to
an associated misfit (or truncation) error, ¢(m) (equation (4)),
which tells us how much of the input energy we have omitted from

the reconstruction,.

Given that the j.th eigenvalue xj simply gives a measure of
the energy content of the j.th principal component wj(z)
(equation (11)), and a Sum of the eigenvalues yields the total

input energy (equation (13)), we may rewrite this as:

¢(m) =

J

(22)

N ™M=
>

m+ 1 J
So, to decide upon the number of principal components to wuse in

the reconstruction, I simply request that a specified amount of
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the 1input energy be present in the output. I express this

requirement in terms of the reconstruction energy:

m n _
n(m) = 100 I AN/ Z AL - .(23)
j=1 1 j=r
Conversely, we may speak of the percentage misfit:
n ' n _ :
u(m) = 100 I N,/ I X, =100 ¢(m) / ¢(0) : (24)
j=m+1] J j=1 / . S

In Figure 2.1, we see a plot of the cumulative percentage energy
- versus number of eigenvalues, for a stacked seismic section. We
see manifest here the -energy packing property of the KL
transform: wvirtually all the signal energy is contained in the

first 15 of the 100 principal components.

Furthermore, due to the optimal packing of information by
the KL transformation, this percentage of the input energy will
be that associated with features which are most similar across

the traces.

SECTION 2,I11: APPLICATION TO SEISMIC DATA.

a. Introduction

From the simple case of similar waveforms, I now progress to
the description of waveforms within a set of seismic data. For
the most part, I will discuss stacked seismic sections, which

often incorporate flat-lying or dipping events with a particular



35
waveform across the data section.

b. Flat Lying Events.

vFrom the way in which the covariance matrix T is definéd, a
waveform which occurs from ‘trace-to-trace at the same arrival
time will be seen as most coherent. It is this similarity of
signal character across . the traces, which constitutes the
dominant and most coherent characteristic. If the data are highly
coherent, as for example in a flat lying stacked seismic section,
then we will need only a few principal components to adequately

reconstruct the data.

c. Dipping Events.

The flat 1lying events are seen as 'most common' due to the
way in which the covariance matrix I' is defined. However, 1if we
wished to emphasize a set of parallel dipping events, we could
adjust the covariance matrix calculation in such a way as to
represent preferred lags, corresponding to some desired dip
direction, rather than the zero-lag which corresponds to

horizontal events.

This end is achieved most easily by introducing a wedge of
zeroes into the start of the data. The wedge is chosen to make an
event of the specified dip appear to be horizontal in the new,

shifted data field.
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" In effect, we are producing a new data set Y, such that:
y; (1) = 8(t=V(i=1)) * x, (1) _ S (25)

where 8 is the Dirac delta function, and V is the dip of the beds
expressed in time-samples per trace;  '*' denotes convolution.
v cah be positive or negative, depending on the.dip direction. I
refer later to a KL transformation on Y as a  'slant-KL' ’by

analogy to the slant-stack.

I consider the usefulness of data reconstruction from a

limited number of principal components in Chapter 3, Section 3.I.

d. Less Coherent Information.

It 1is of interest at this stage to consider again what is
left over when we have reconstructed a data set from the first m
principal components. As noted in Section 1.IIIb, the answer is
that we are left with a residue which represents that which 1is
least common in our data. This residue will consist primarily of

anomalous data, described below, and random (white) noise.

If we wutilized very few of the principal components in a
reconstruction of a stacked seismic section, then we would
construct a section which incorporated only the most flat lying
coherent events. Consequently, events which were dipping, or
exhibited an undulating structure, would be omitted. A

reconstruction forged from the next few principal components
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would comprise the dipping or undulating events. The remaining

principal components would represent incoherent noise.
So, we see that a misfit seismic section, defined as:

P ’
xTi(t) = Z' r[jwj(t) i=l,...,n; m< p<mn (26)

can yield useful insight ‘into the subtler characteristics of the
data. The effectiveness of misfit reconstruction in outlining
- anomalous parts of a seismic section is demonstrated 1in Chaptér'

3, Section II,

Misfit reconstruction also forms the basis for Sections
3.IIT and 3.IV. In the former, I separate diffraction from
reflection e&ents, while in the latter I separate multiples
(which have been aligned by constant-velocity normal moveout
correction: our common signal) from primary events (our desired

signal) in common-depth-point data.

e. The Significance of the Eigenvector Elements.

Useful insight can be gained from an investigation of the
physical properties of the eigenvectors in R. The elements of the
eigenvector Pj, which correspond to the j.r# principal component,
denote the contribution of each seismic trace to that principal
component. Consequently, if all the input traces except the third
were similar, then all the elements of ¥, would be of similar

size except for r;; which would be much smaller (see Levy et al.,
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1983, Figure 4).

We may also note that when all the -input traces are.
identical, the 1.st principal component alone will carry all the
" information necessary for signal reconstruction and the

. eigénvalues Xz,'ka, . Xn will be zero.

The eigenvecfor elements rij tell us how much of the i.th
seismic trace is projected onto the j.1#4 principal component. In
light of this, 1 Qse the following similarity measure to examine
the 'distance' between the projections of the input traces onto a

given group of principal components:

m
A, = E (a.. - akj)2 (27)

The significance of this measure cén be seen as follows: for
m = 1, say, i.e. using only the first eigenvector, T\ will  Dbe
the square of the difference between the amplitudes of the
projections of the i.th and k.t h seismic traces onto the 1.st
principal component. So, 1if A, = 0, we infer that traces i and %

have the same contributions to the 1.st principal component. If

Aik is relatively large, then the converse is true.

If we now sum over all m eigenvectors associated with the
coherent energy, and find that Aik is still near zero, then we

infer that traces i and k have similar projections onto all m
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Princibal éomponents, and further,”thatftraées i and k are fVery
similar. We »woﬁld determine m from the requirement'that we
incorpérate the effects.of the most significant percentage of the
input data energy (using equatibh.(ZZ)). This method was used by

Tjostheim and Sandvin (1979) .to discriminate between = seismic
events and nuclear blasts on the basis of the eigenstructure of

groups of events.

SECTION Z.IV: THE COMPLEX KARHUNEN-LOEVE TRANSFORMATION.

a. Introduction.

The important characteristics of the KL transformation
enumerated by Kramer and Mathews (1956) for real. signals carry
over directly to the case when complex signals are used. The
rationale for considering complex signals is that we will be able
to address the problem of phase changes 1in the signal

(Levy et al., 1983).

Most of the applications considered in this work using the
KLT can be given a further'degree of freedom (i.e. that of phase
change) by utilizing the complex KL transformation. Whenever the
complex KLT is used as well as the real KLT, I will draw a

comparison between the results.

In general, the complex KL (or CKL) transform will achieve a

greater compression of data than the real KL (or RKL) transform.
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'This is due to the’_abilityiof a phase'change to maké certain
signals even more similar. Further, the comblex techniqﬁé vallows
us to deal directly - with frequency domain data, from which a
signal common to within a phase shift, at each frequency 1in the

band of interest, can be extracted.

Given that we record a real signal, we are facéd initially
with the "problem of constructing a complex analogue in order to
proceed. This is most readily accomplished by considering the
complex tréée (or analytic signal) of the data xi(t) (eqg.

Taner et al., 1977; Bracewell, 1978).

b. The Complex Trace.

Given a wavelet w(t), its compléx trace w(r) is defined as:
wir) = w(t) - iw(t) (28)

where w(z) = H[w(1)] is the Hilbert transform (eg. Bracewell,
1978; Aki and Richards, 1980; Levy and Oldenburg, 1982) of the

initial wavelet.

To introduce a pure phase change to a wavelet, we multiply
its complex trace by a complex exponential. Consequently, a

wavelet phase shifted by an amount e, is given by:

w(t;:e)

Relw(t) exp(-ie)]

cos(e) w(t) + sin(e) w(t) (29)
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For complex. signals, the .covariance matrix is Hermitian and
positive semi-definite and hence a unitary matrix U, is required

for diagonalization (Strang, 1980), i.e.:

r=xx7=uvuauvf
where X 1s complex; 'H' denotes the Hermitian, or conjugate,

transpose.

The eigenvalues will still be real, but the eigenvectors are
complex. Nevertheless, the truncation error associated with a

reconstruction is still given by equation (22).

c. Identical Signals.

As in Section 2.Ila, if we consider the case where
&[(t) = ¢ 3(1); but where the ¢, are now complex constants, and
%i(t) and 5§(t) are also complex, then the first principal
component will be:

vi(t) = (

i

e, 120172 5(1) (30)

s

1

This latter equation shows that complex signals which differ only
by a complex scale factor can be represented exactly by a single
complex principal component and associated weights (the complex

elements of the first row of U).

As an illustration, we consider the following simple

example. Let X,(t) = 5(1t) and X,(t) = exp(-ie) 5(t). The energy
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in the signal is:
T

[sl17 = 1 501) 5(0)7 dr

where '*' denotes the complex conjugate. Thus:

I ) ]
V1 exp(—-ie) |}
1 ]
~ | ]
re stz ;
i !
' exp(ie) I
L d
The eigenvalues of TI' are X\,=2]]|s||?, A,;=0. The unitary
eigenvector matrix is:
r ) |
il exp(-ie) |
1 |
i 1
U= 1//2 ! i
i 1
1 |
b exp(ie) 1
L J

The first principal component is:

$1(f) =u11 %1(’) +u21 3‘2(’) ‘/2 .’S:(l) (31)

1

where u, , are the elements of u,, the first column eigenvector of

U.

d. Phase Recovery.

Let us now consider the two signals:

xy(1) w(t), and

x,(1)

w(t;e).
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Their corresponding analYtic signéls are:

Xy(1) = w(t)

X,(t) w(t)exp(ie)

and hence these éignals are like those ‘considered in the
preceding example. Application of the CKL transformation will
produce a complex first principal component equal to w(i1).
Furthermore, substitution of the expressions for x;(iz) and %,(t)
into equation (31) demands that the constants uij are such that
" the phase shift e 1is cancelled. In other words, equation (31)
shows that the phaseirotation in the second signal is recoverable
directly from the eigenyector associated with the first principal

component. That is:

€ = tan_1(ll21) (32)

e. The Complex KL Transformation and Time Shifts.

Adjacent seismic signals differ not only because of phase
shifts of the wavelet but also because of time shifts, that 1is,
'residual statics'. If these time shifts are small they can be
accommodated by a phase shift of the waveform. To see this we

consider a signal x(t) and its Fourier transform X(f). If:

x(t) <-———-> X(f)

Then:
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x(t=t,) <====> X(flexp(ie),
where e = 27nft,, and t, is the time shift.

Although this shows that the phase shift cannot tfuly be régarded
as a constant, for a sufficiently bénd limited signal with center
frequency fé, the frequency dépendence can be neglected and using
the notation of equation (29), x(t-t,) can be written as x(t;:e)

with e redefined as:

€ = Zﬂfclo

When presented with two signals offset by a static time
shift, the complex KL routine will rotate the displaced wavelet
in an attempt to minimize the least-squares misfit between the
real part of the two signals. In Figure 2.2, we see a series of
plots of the phase rotation angle ¢ (returned by the complex KL
routine) versus the static time shift 1, (in sample points)
between two Ricker wavelets. Each plot is for a different wavelet
centre frequency (ergo bandwidth). The figures shown are for
centre freqguencies: 5, 15, 25, 35, 45, and 55 Hz, respectively.
The time shift over which the locus is a straight line decreases
for higher fregencies, as expected, since the waveform is then
narrower and the static shift has a more pronounced effect.
However, the linearity of this relationship is not diagnostic of
the usefulness of the phase rotation. As the waveforms shift

progressively, so the phase shift increases. We are maximizing
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the commonality of .the real parts of the.combléx wavelets, but
this doéé not necessarily make them look similar.. Thus, the
_linearity does not indicate whether the shifted wavelet, when
rotated, will resemble the reference, To_ascertain this, we 1look
at the actual rotated waveforms, or at the percentage of energy
present in the first principal component. This will equal 100%

_ when the identical waveforms are coincident, and fall-off to 50%

when there is no overlap at all.

Up to a time shift prescribéd by'equation (33) below, all
rotated-wavelet distortions are small enough to"produce a good
stacked result, and the slope of the straight 1ine segments of e
Versus 1, (?igure 2.2) changes uniformally with centre frequency
down to about 5 Hz. The actual waveforms are shown in Figure 2.3.
Here we see (1) the reference, (2) the time shifted wavelet, and
(3) the shifted wavelet from (2) after phase rotation by e, for
three different time shifts and centre frequencies. As can be
seen visually as well as from the large x(1) values, the rotated
time shifted wavelets are very similar to the reference‘ pulse,
and are more likely to stack contructively than are their

unrotated counterparts.

For the Ricker wavelets of centre frequency fc I found
empirically that the phase shift versus static time shift

approximation was valid over time shifts given by:

to < (0f4/fc) seconds (33)
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and that therrelationship between centre frequency and phase

rotation per millisecond shift was:
ems=_0.006 fC

Equation 33 has a simple origin related to the shape of a Ricker
wavelet. The side lobe to side lobe breadth of a Ricker'pulse, b,

is given by:
b =ve/(nf )

and for visually acceptable phase rotations, which keep 85 - 90

o°

of the energy in the first principal component, I noted that the
time shift should be < b,/2, as exemplified by equation (33). This

translates into phase shifts of £ 2.0 radians.

f. Complex Eigenvectors.

I introduce here an extension of equation (27) to deal with
the complex -eigenvectors generated by the complex KL transform
(Levy et al., 1983). In this case we would be seeing differences
in phase structure as reflected in the 'phase' of the complex
eigenvector elements (by which I mean atan{lm(rij)/Re(rij)}), as

well as in the amplitudes of the projections.

For the complex case equation (27) becomes:

*
AL = (aij - akj) (aij - akj) (34)

f™Mx

j=1

where '*' denotes the complex conjugate, and the a's are now
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complex, i.e.:

a. . r..
Ly Lj
for the complex rij'
I utilize both eqdations (27) and (34) in Section 4.1, where

I review the approach of Hagen (1982) and assess the limitations

of the applicability of cluster analysis to seismic data.
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FIGURE 2.1
The cumulative percentage energy from the RKL decomposition of
the 100 traces of seismic data shown in Figure 3.5a. Note how
virtually all of the signal energy is contained in the first 15
principal components.
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Eight plots each showing the requisite phase shift necessary to
of time

minimize the least-squares misfit between the real part
displaced signals. In this case, the signals are pairs of Ricker
wavelets with centre frequency 5, 15, 25, 35, 45, 55, 65, and
75 Hz, respectively, sampled at 2 ms. The time shift axis is

given in sample points.
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CHAPTER. 3.

DATA RECONSTRUCTION.

SECTION 3.I: RECONSTRUCTION OF COHERENT INFORMATION.

a. Introduction,

Here I employ the energy-packing property of the KL
transform. Recall that for a set of similar input traces, there
will be one principal component that contains more energy than
any other. The principal components, when ordered in decreasing
energy content, afford the 1identification and subsequent
elimination of incoherent energy present 1in 'the 1input data.
Furthermore, the method also allows reconstruction of data to
within a desired accuracy, from a relatively small number of

principal components.

Before progressing to examples of reconstruction of stacked
seismic sections, I introduce an example of stacking in the
presence of time and phase shifts by representing a stack by a
sum of the most significant principal components resulting from
the decomposition of a move-out corrected gather. This stacking
method may be performed using either the reai or complex KL

transformation,
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b. KL Stack Versus the Mean Stack.

A complex KL anélysis of a set. of signals having time shifts.
which are random and have zerb mean will have.é first principal
component that 'is like the true signal.. This _suggests an
immediate appiication in stacking signals contaminated with
- static shifts (Levy et al., 1983). The same is true to a lesse;
extent for a real KL anélysis; Hemon and Mace '(1978) and
Ulrych et al. (1983) both demonstrate how the first principal
component from a real KL decomposition of a moveout corrected CDP
gather can be used as an estimate of the stack. The assertion is
that after moveout correction, there will be an unknown trace
which 1is common to all the seismic traces: this is usually
estimated by extracting the mean of the input ensemble. For the
KL case we estimate that common trace by constructing the first
principal component, which is a least squares estimate of the

common signal.

A further step, which was not fully explored in the above
papers, is the ability to reconstruct the zero-offset
representation using a small number of principal components which
are associated with the largest eigenvalues. This possibility is
particularly interesting for cases where a phase shift cannot
fully account for the observed phenomenon (as would be the case

with residual statics problems). In effect, I replace the mean
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stack:
n . _ .
z xi(t) . (35)

x(t) = (n~ ")
' i=1

with a sum of the most energetic principal cOmponehts:

"X(t) = (n°")

™M=
n'MS .
~

¢j(l) ' : (36)

i.e., I have simply replaced xi(t) in egquation  (35) with 1its

truncated reconstruction from equation (3).

c. Synthetic Data Examples.

In the presence of small time. (or phase) shifts, the first
principal component should provide a better representation of the
true signal than the mean stack. This is illustrated in the
examples in Figure 3.1. In Figure 3.1(a) 15 signals have been
randomly shifted by amounts wup to * 20 ms. The mean stack of
these signals has been computed and it 1is seen (Figure 3.1(a)
bottom) to be a poor representation of the initial signal. On the
other hand, the RKL and CKL stacks more closely represent the
initial signal. 1In Figqure 3.1(b) I show analagous results when
the signals differ only because of phase shifts. The mean stack
has very small amplitude because of cancellation effects
resulting from the phase shifts. The CKL stack of course
reproduces the input signal exactly, while the RKL stack fares
somewhat better than the mean stack. Figure 3.1(c) shows the mean

stack, RKL, and CKL stacks of signals that are phase shifted and
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contaminated by statics.

In all cases, the KL stack yields a better representafion of
the 1input signal than does the mean stack. This should not
surprise us since the CKL algorithm posséss two (and fhe . RKL
stack one) additional degrees of freedom which are not utilized
in the mean stack. In the construction of the principal
components, each trace 1is weighted according to the degree of
correlation it exhibits with the other input signals; also, for
the CKL stack before the construction of the principal
components, each trace is further rotated by a constant phase
shift so that the total correlated energy in the real part is
increased. Unless otherwise specified, for a complex KL analysis,
rotation of the signals to the phase of the uppermost ('near
offset') traces was carried out throughout this work under the
assumption that we are generally interested in the reconstruction

of the zero-offset trace.

d. Reconstruction of Stacked Data.

Moving on to the situation where we have stacked seismic
sections, I ' consider the following synthetic examples to
demonstrate how reconstruction is able to segregate different
events. It was found that the CKL method tended to obliterate the
small dips and undulations in seismic sections, replacing them
with flat 1lying phase shifted waveforms. Consequently, all

reconstructions shown in this Chapter are derived from the RKL
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transform which produced excellent résults,

It should be  hoted that in pldtting- all the following
figures I normalize to the largest .value; hence the maximum

amplitude in all figures is arbitarily set to unity.

e. Synthetic Data Examples. .

1. Twenty four synthetic seismic traces representing
shallowly dipping events superimposed on steeply dipping coherent
'noise' events, such as those introduced by marine streamer cable
motion, or ground roll, into a final stacked - seismic section
(Larner et al., 1983) were constructed. I introduced a
progressive phase change (from 0 to #n/3 radians) to fhe wavelets
across the events representing the geological " horizons, and
introduced a vertical fault of offset 36 ms at the 10.£h trace. I
then added 10% white noise (all noise levels are expressed here

as a percentage of the maximum trace amplitude).

Figure 3.2a shows the seismic representation of the basic
geological model: phase shifted wavelets in shallowly dipping
horizons offset by a vertical fault. Figure 3.2b is the 'noise'
section, i.e. steeply-dipping events plus random noise. Figure
3.2c shows the contaminated synthetic seismic section described
above (i.e. the sum of 2a and 2b). In Figure 3.2d we see a 75%
reconstruction of the data: the criterion governing

reconstruction was the reconstruction energy, defined in equation
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(23). We note that the events which deviate from the flat—lying
‘character of the model have been“seVerely attenuated, leaving the
representation of the‘underlyihg "geological' structure basically

intact.

The phase chafactér of the signals has been preserved, as
has the distinctiveness of the 'fault' edqge. Howéver, we note an
increase in the background noise in comparison to Figure 3.2a.
This is a residual effect brought about by diécarding principal
components which contained contributions from Both- the dipping
noise and the flat lying waveforms. The 24 principal components
corresponding to the data in Figure 3.2c are seen in Figure 3.2e.
The first 5 principal components are charaéteristic of flat lying
events, and combine with the appropriate weights to produce the
data of Figure 3.2d. The next few principal components (6 - 12)
show a sawtooth pattern (shaded in the figure) which combines to
form the dipping waveforms of the input data. The principal
components have been normalized for plotting, otherwise only the

first few would have a discernable amplitude.

2. The second example I consider is similar to the first,
but with 50% white noise added to the first 7 and last 8 traces.
Note also that the fault location is between traces 7 and 8 1in
this example. In Figure 3.3a and b, we see the seismic data and
noisy section after bandpass filtering (0 - 50 Hz). Attempting to
isolate the model from the noise, I reconstructed the seismograms

to 72% of the total energy. As 1is seen 1in Figure 3.3c, this
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attempt has been reasonably successful: the noise level has been
}considérably’reduced, and the phase chara¢ter and fault edge have
been well preserved. Fdr the most parf, the fault edge is not

smeared over adjacent traces but remains distinct.

3. If the. geological model had comprised mére
steeply-dipping parallel (or sub-parallel) beds, then I could
have used the 'slant KL' procedure described earlier (Section
2.IIIc). This will bias the segregation of dipping events in
favour of those with the specified dip (equation (5)). This

procedure is demonstrated in the following example.

A data set similar to that wused 1in example 1 was
constructed, but the dips on the 'geological' horizons Qere
increased by a factor of 5. Following the same procedure as
before, we see 1in Figures 3.4a, b, c, 4, and e, the seismic
section; the section plus noise and 'streamer noise'; the data
after a dip of 8 ms per trace has been removed; the 75%
reconstruction depicting the underlying structure, and finally,
the reconstructed data with the dip re-instated. The phase
character and fault definition are well ©preserved, whereas the

dipping noise events have been severely attenuated.

f. Real Data Examples.

~ The following figures exemplify the ability of KL

reconstruction to enhance coherency in real stacked data. In all
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reconStructiéns we will immediately see how the  uncorrelated
background noise level has been reduced. Trace-to-trace coheréncy
has been somewha£ enhanced, as the éye is no longe; distracted by -
a background of incoherent energy. The storage requirements
associated with reconstructions of different energies were

considerably reduced and are mentioned later.

In most of the real data examples supplied to me, no
information concerning the trace spacing, section location,
geology, or hydrocarbon potential was made available.
Conseqﬁently, the description of the data presented here 1is

sketchy.

For processing large seismic sections, I break the data into
overlapping trace and time segments. This is necessary for two
reasons. First is the underlying assumption that we have parallel
flat (or dipping) events, an assumption which breaks down unless
we look at small windows (eg. 100 traces by 1 second). Second is
the computational expense. The time for decomposition of a matrix
using SVD 1s proportional to the cube of the number of traces
(Strang (1982)). Consequently, we do not desire to decompose
segments with more than about 100 traces. For example,
decomposition of 530 traces of data, each of 500 points, broken
into overlapping segments of 85 traces by 150 points, took 70
minutes of CPU time on a Perkin Elmer 3220. The corresponding
reconstruction took a few minutes. I refer to reconstruction of

large sections of data by this overlapping technique as compound
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reconstruction.

1. In -Figure 3.5a, I have selected a window.of’100 traces
from a éonventionally processed.stackedvsection. The traces weré
décomposed into their principal 'componénts: the first five
principal components alone accounted for 85% of the input energy,
and the first 12 principal components for 95% of the energy. In
other words, for this data I need only 12% of the principal
components to almost perfectly reconstruct the 1input data.
Figures 3.5b and 3.5c respectively show the 95% and 85%
reconstructions. Note the increase in coherency in the zone
1.1 -~ 1.5 seconds, which consists of interbedded sand-shale

sequences.

In the 95% reconstruction, we note the general increase in
coherency, while at the same time small-scale features are
preserved. For example, the small lens-like feature depicted 1in
the box at about 1.1 seconds between traces 55 - 75, is enhanced
in the 95% reconstruction. However, discarding more principal
components aé is done for the 85% reconstruction leaves the
section looking very smooth and continuous, especially over areas
with small scale features. The lens-like feature is obliterated
in this reconstruction. The phase structure of the major horizons
remains intact 1in Dboth reconstfuctions; this can be seen by
examining the waveforms along the edges of the section, for

example.
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2. The second real example (Figure 3.6a) is also from a
conventionaliy processed stacked section. Thé.'96 itraces were
decomposed into their prinéipalv components.‘ The first. 12
principal components account for 85% of the input energy;‘ the
first 32 principal components for 95% of the energy. Here I need
only about 30% of the principal,components to almost perfectly
reconstruct the input daté set. Figures 3.6b and 3.6c show the

95% and 85% reconstructions, respectively.

In this example, I focus attention on two featureé. Firstly,
in box A, we see a negative trough under a strong positive
reflection. This sharp contrast is indicative of a localized high
reflection coefficient, and = is sometimes indicative of
hydrocarbon potential. This positive-negative feature is well
preserved 1in both reconstructions; at the same time the

background noise level is greatly reduced.

The second feature noted is the bifurcation of the reflector
just above 1.7 seconds in the centre of box B. This feature is
preserved in the 95% reconstruction, but, by 85% we see a loss of

definition of the event, indicative of over winnowing.

3. As an example of geological interest, we see in Figure
3.7 part of a section of data incorporating a buried caldera,
identified by interpreters, and in Figure 3.8, the corresponding
window of the 95% compound reconstruction of the data, as well as

my interpretive sketch of the figure. The crater, seen 1in the
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sketch, spans over 80 traces, and is barely visible in ‘the
ofiginal data. Ho&éver, after a 95% compouhd reconstruction, the
incoherent noise level has fallen off drastically, . and the
features of interest, the fine-scale stfucture demonsfrating the
draping of sedimentary strata er; the édge of the crater, are.
more clearly seen in the reconstruction. Also of‘interest is the
severe normal block faulting in;the central part of the section,
This 1s probably related to.the meteorite impact. It is such a
structure which is of interest as a potential trap for
hydrocarbons, and this enhanced presentation may enable better

interpretation of the data.

4, To demonstrate the slant-KL procedure, in Figure 3.9 I
consider an enlarged section of the data shown in Figure 3.6. The
events in this section dip to the left about 0.1 s over the 96
traces, and the computation of the covariance matrix was adjusted
to accommodate this dip. The strong pair of arrivals seen above
1.0 s in the input data (a) are clarified markedly 1in the 95%
reconstruction (b). However, the 85% reconstruction (c) loses
much of the finer detail. A further example of loss of resolution
is the small ‘'pull-up' type event in the box A. This feature,
perhaps indicative of a velocity anomaly associated with a reef,
is well preserved in the 95% reconstruction, but has been lost in

the 85% reconstruction.
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g. Data Compression.

As a corollary to parsimonious reconstruction, I note the
‘following important point. In all the examples considered, we saw
“how the data could be almost perfectly reconstructed from a'émall
subset of principal components. In other words, .the required
storage space will be drastically reduced, as will the data
‘transmission speed. This latter point is of concern when data are
‘being shunted from a main-frame computer to an auxiliary machine
for processing. In the data examples processed to date, I find
that we typically dispense with 70 - 90% of our required storage
space (fhis point is exemplified in Figure 2.1, which shows the
cumulative percentage energy associated with the principal
components). Further, it is noted that any processing which
assumes the <conditions of the linear gonvolutional model may be
performed on the principal components themselves rather than on

the original section.

h., Discussion.

The main thrust of this section has been to introduce the
application of the KLT to the recovery of coherent information
for image enhancement of stacked seismic sections (presented here
for the first time). The stacking of seismic data (first applied

to moveout corrected gathers by Hemon and Mace (1978) for the
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real KLT alone) was mentidned for the RKL-and CKL transforms, as.
an introduction to the signal extraction Capabilities of the

method.

The stacked section reconstruction technique has proved Very
successful so far, and has been applied extenéively to real data
in an industrial processing environment. Its main advantage is in
its ability to greatly reduce the background level of incoherent
noise, which is often prevalent at earlier times'.in” a seismic
section. The choice of a suitable reconstruction energy 1is
subjective, but for most of the data I have examined, 90 - 95%
reconstructions seem to give reasonable results. Dropping the
reconstruction eﬁergy below 90% results in loss of resolution, as
seen in many of the 85% reconstructions presented here. When disc
storage is a problem during intermediate processing stages, the

data compression aspect of the transform is also valuable.
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FIGURE 3.1

(a) Fifteen Ricker wavelets, plus noise (up to 40% of the maximum
amplitude) time shifted by up to * 20 ms. The lower panel shows:
(1) the mean, (2) RKL, and (3) CKL stacks (the RKL and CKL stacks
used one principal component).

(b) The same Ricker wavelets with phase shifts of up to #w. Below
are: (1) the mean, (2) RKL, and (3) CKL stacks

(c) The wavelets with <100% noise, and up to 20 ms static
shifts, AND wup to 7 phase shifts. Below are: (1) the mean,

(2) RKL, and (3) CKL stacks

Note how in all three examples the CKL stack is better able to
reproduce the underlying wavelet, and how the RKL stack performs
well unless large phase shifts are involved.
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FIGURE 3.2
(a) Seismic representation of the geological model: phase shifted
wavelets in shallowly dipping horizons (up to 2 ms per trace
dip), offset by a vertical fault at the 10th trace.
(b) The "noise"™ section: steeply dipping coherent events (dips
between 16 and 24 ms per trace, such as could be produced by
marine streamer noise of ground roll) and 10% random noise.
(c) A sum of the previous two data sets: this is the input for
the processing.
(d) A 75% reconstruction of 2c, requiring the first 5 of the 24
principal components. Note the preservation of phase information,
and the clarity of the fault edge.
(e) The 24 principal components corresponding to 2c. The first 5
principal components are dominated by energetic peaks
characteristic of flat 1lying structure. Note the smaller
amplitude peaks 1in the band of principal components 6 - 17
(shaded in the figure). It is these waveforms which combine to

form the steeply dipping events.
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FIGURE 3.3
(a) Synthetic data similar to that of Figure 3.2a, with a
vertical fault between traces 7 and 8, after bandpass filtering
(10 - 50 Hz).
(b} The data after addition of 50% random noise to the first 7
and last 8 traces, and bandpass filtering as above.
(c) A 72% reconstruction requiring 4 of the 24 principal
components. Note the marked reduction ‘in the background noise
level and the preservation of the essential features.
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, FIGURE 3.4 .
(a) Steeply dipping (between 7 and 10 ms per trace) sub-parallel
phase shifted events with a vertical fault. ’
(b) The data plus the dipping "noise" events of Figure 3.2b.
(c) The flattened contaminated data, i.e. 3.4b after a dip of
8 ms per trace has been removed. :
(d) A 75% reconstruction requiring 5 of the 24 principal
components.,
(e) The reconstruction after the dip has been reinstated. Again,
the phase character and fault definition are well preserved,
whereas the dipping noise events have been severely attenuated.
The background noise level in places has increased as we have
omitted some principal components which contained both the
desired signal and the dipping noise events.
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the box at 1.
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FIGURE 3.5a
traces from a conventionally processed stacked

- 2.7 seconds) and the small lens-like feature in
s‘
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incoherent

energy has been reduced greatly, and small scale features such as
the lens highlighted in the box are preserved.



70

T R T R T T T S S I, S
A .,
:‘-A
S A ==
- —~—m——
———— —— —a———
A S N 7S —_—
& e —
A e
= —————
- m———
o | —
w e oy
YV VW N  —— -
o V"
[+ o] -
o S ———
© -
1
FIGURE 3.5c
The 85% reconstruction requiring 5 of the 100 principal

components. In this reconstruction, the background of incoherent
energy has also been reduced greatly, but small scale features
such as the lens highlighted in the box have been obliterated,
because by this reconstruction energy we have left only the

flattest horizons.
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FIGURE 3.6a
Ninety six traces from. a conventionally processed stacked
section. Note the strong negative trough below the prominent
reflection in box A, and the bifurcation of the horizon in box B.
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FIGURE 3.6b
The 95% reconstruction requiring 32 of - the 96 principal
components. In this reconstruction the positive-negative contrast
in box A is well preserved, while the background noise is
severely attenuated. Also, the bifurcation of the horizon at
1.7 s central to box B is well preserved.
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FIGURE 3.6cC
The 85% reconstruction requiring 12 of the 96 principal
components. Also in this reconstruction, the positive-negative
contrast in box A is well preserved, while the background noise
is severely attenuated. However, the bifurcation of the horizon
at 1.7 s.central to box B has lost definition.
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FIGURE 3.7

(a). A window of 140 traces from a section with a caldera. This

feature, picked by 1nterpreters, is not particularly clear in the
input data, which is noisy, and exhibits severe faulting perhaps

associated with the impact feature.
(b). Below is an interpretive sketch based on the

data.

reconstructed
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FIGURE 3.8

(a). A window of 140 traces from a section with a caldera. In the
95% compound reconstruction (see text) the crater and sedimentary
fill are much clearer. Also preserved and clarified are the
normal block fault edges clearly visible in the section.

(b). The sketch is reproduced below.
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FIGURE 3.9c
Slant-KL. 85% reconstruction: resolution has been lost, and the
reef-like structure has been smeared-out.
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SECTION 3.II: MISFIT RECONSTRUCTION.

a. Introduction.

Using equation (23), I may discard the most common part of a
data set and investigate the appearance and significance of the

less obvious, perhaps diagnostic features which remain.

b. Synthetic Data Examples.

1. In the reconstruction of the synthetic data example
(Figure 3.2d), I used 5 principal components; there, I was able
to separate the steeply dipping coherent noise events from the
seismic representation of the geological structure. In Figure
3.10a, 1 construct a misfit seismic section of Figure 3.2c by
leaving-out the first 75% of the -energy, and including the
remainder (i.e. I sum principal components 6 to 24). A sum of the
data in Figures 3.2d and 3.10a (before plotting normalization)

would yield exactly the data shown in Figure 3.2c.

The same is true of the example with more steeply dipping
events shown in Figure 3.4, Figure 3.10b shows the misfit
reconstruction which is left over when the first 5 principal
components have been omitted. A sum of Figures 3.4d and 3.10b,
before plotting normalization, would yield exactly the data shown

in Figure 3.4c.

2. The second example shows parallel flat-lying layers with
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a central lens-like feature. In Figures 3.11a, b, and c, we'ﬁsee
the data; a 94% reconstruction, and a misfit reconstruétiohi
respectively.'The 94% feconstruction'essentially shows the basic
features, ife. flat lying events, and discriminates against the
‘structure. Howe&er, the misfit reconstruction clearly shows the
léns—like feature, as this was not a major contributing factor to

the first 3 principal components. A display of this kind would

serve to highlight anomalous features.

c. Real Data Examples.

1. In Figure 3.12 (a) I show data from an area with a
steeply dipping fault. In the box at 1.45 s we see a strong
negative event which terminates at about trace 68. In box B, we
see a sinuous and discontinuous horizon extending to the right
from trace 85 to its terminationvby the fault near trace 50. In
(b) I show the misfit overlay produced by plotting a misfit
reconstruction (omitting the first 70% of the energy) as grey
shades over the wiggle trace plot of the original data. In box A,
we note a strong black-white contrast highlighting the events at
the fault edge. The whole of the upper zone tends to give large
misfit values as it dips quite steeply to the right, due to the
fault. In box B, we again see the black-white contrast, this time
over the hump 1in the centre of the box. The white patéh

terminates to the right at the fault.

2. An example from a braided stream system, of sand and
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gravel ' type _deposits( forms the next case. In Figure 3.13(a).we
see a discontinuous horizon at abpﬁt 0.7  s. Individual events
fade in and out, as the sand lenses terhinate and begin again.
The misfit overlay (b) highiights the entire central region as
having many unusual features. As a whole the . picture is
confusing; however, we do see some features of interest. Ih box
A, we see a white area corresponding to the pinch-out of the fhin
positive anomaly just above 0.7 s (arrow). A similar black-white

feature (box B) corresponds to the apex of the hump between

traces 1 and 20 at 0.73 s.

d. Discussion.

In this section, I have introduced misfit reconstruction as
a tool for highlighting areas of anomalous structure. However, as
noted from the examples, it is questionable as to whether this
technique 1s generally applicable. Because the misfits are
expressed relative to flat lying (or parallel) events (by wvirtue
of the way in which the covariance matrix is computed) any event
which deviates from a flat 1lying, or parallel model, will
contribute to the misfit. Hence data with many small"kinks' in
it will have a lot of background incoherent energy which will
tend to produce 'misfits' everywhere. With such data, the misfit
overlay may be of little use. However, in data where pinch-outs
occur, we would expect to see a noticeable misfit in the overlay

presentation.



82

" This method of presentation, although in itself perhaps not
diagnostic of hydrocarbon-trapping structures, may tend to draw
the interpretef;s eye quickly to zones which are not typical of
the stacked séismic section., However, Qithout the input of an
experienced interpreter and specificvknowledge of the data areas,
I am unable to determine the significénée or usefulness of these
and other specific eiamples of misfit ovérlays. The usefulness of
this particular/éechniqde_would best be assessed in an industrial
seismic interpretation department where access to hany diverse

data sets and their geological background are readily available.
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FIGURE 3.10
(a) A misfit reconstruction (principal components 6 - 24) of the
data shown in Figure 3.2c, isolating the dipping noise events
(c). '
(b) A misfit reconstruction (principal components 6 - 24) of the

data shown in Figure 3.4c, isolating the dipping noise events
(c).

Again, because I have included some of the principal components
which contain information from the horizontal structure, the
general "noise" level has been increased.
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FIGURE 3.11
(a) A synthetic seismic section depicting flat

lens-like structure.
(b) The 94% reconstruction (requiring 3 of the 24 principal

components) isolating the predominant flat-lying events.
(c) The misfit reconstruction (principal components 3 - 24)
highlighting the lens-like feature; renormalized for plotting.

horizons with a
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Input data from a faulted region. Note the large negative anomaly

which

.and the discontinuous horizon in box B, which terminates

right at the fault.

to

terminates to the left at the fault near trace 68 (box A),

the
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FIGURE 3.12b
Misfit overlay (omitting the first 70% of the energy; i.e. the
first four principal components). Note the strong black- -white
contrasts which highlight the events terminating near the fault
(see boxes A and B).
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FIGURE 3.13b
Misfit overlay (omitting the first 60% of the energy; i.e. the
first four principal components). Note the strong black-white
contrasts which highlight the events in the boxes. In box A, we
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the arrow, while in box B we see a black-white pair highlighting
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SECTION 3.II1: SEPARATION OF DIFFRACTIONS.

a. Ihtroduction.

As Jan  offshoot of the misfit reconstruction procedure, I
noted thaflin areas of severe faulting or with numerous 'point'
diffractors, diffraction events could readilyrbe separated from
the flat or parallel lying horizons.

It is difficult to perform residual migration or to estimate
velocities from diffraction hyperbolae without 1isolating those
diffraction events from the reflection events. Levin et al.
(1983) employed a slant-stack (r-p) filtering procedure to
eliminate the reflection events, 1leaving only the diffraction
events and noise. I propose here to utilize the misfit

reconstruction to achieve this goal.

b. Synthetic Data Examples.

1. For a model consisting of a single hérizontal sheet
terminating at trace 10, bﬁried in a medium with velocity 5 km/s,
21 traces separated by 50 m, each of 1.0 second duration were
produced using a Fresnel integral synthetic seismogram program
(M. VYedlin, pers. comm., 1984). The source function was a 16 Hz
Ricker wavelet sampled at 4 ms. The seismic response of this
model vyielded a series of reflection events, and a hyperbolic
diffraction arrival centered about the sheet edge (Figure 3.14b).
This synthetic example 1is particularly problematical, as to a

large extent the right hand of the diffraction event is buried in
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the reflection.

The moveout was removed from the daté'-to flatten the
réflectioﬁ-event, (Figure 3.14c), and an 1isolated diffraction
event (produced separately for cdmpérison) is shown after the
same moveout correction in Figure 3.14d. In Figures 3.15a and b,
we see the 98% reconstruction and the misfit reconstruction for
the real KL decompoSition. We still see residual waveforms where
the flat 1lying event was; this 1is due to the fact that the
waveform in the reflection event changed slightly -acroés the
section and could not totally be reproduced as a linear
combination of the first two principal components. However, the
amplitudes of these residual events is only comparable to the
diffraction event energy (i.e. about 10% of the amplitude of the
input reflection waveforms). On the other hand, the diffraction
event has been faithfully reproduced both in phase and amplitude,
‘except where the diffraction and reflection events ran together,
as occurs between traces 11 and 21. 1In these regions the two
waveforms are not separable, as they are essentially scaled
versions of one another.

2. The second synthetic example (M. Yedlin, pers. comm.,
1984) shows a zero offset seismic section over the same truncated
buried horizontal sheet (Figure 3.14a). This results in a series
of reflection events which terminate over the sheet edge, and a
set of diffraction arrivals centred about the termination point
(Fiqure 3.16a). The diffraction event itself, produced separately

for comparison and normalized, is shown in Figure 3.16b. Figures
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3.17a and b show the 97% KL reconstruction and -miéfit
reconstruction. As is éeén, the miéfit reconstructibn is well
able to separate out the diffraction event whilst preserving the
phase and amplitude information. Some residual features remain in
the wvicinity of the' section where the horizontal reflection
feature was, as some contribution from that feature exists on

principal components other than the first.

c. Migration of Diffraction Sections.

For the model discussed earlier, with a single sheet buried
in a medium of constant velocity, I created a zero-offset section
with trace separation 12.5 m and velocity 4 km/s (Figure 3.18a).
The diffraction event, produced separately for comparison with
subseqguent results, is shown in Figure 3.18b.

Using the frequency-wavenumber migration algorithm of Stolt
(1978), 1 migrated the diffraction section (Figures 3.18c)
derived from Figure 3.18a. In this <case, as the diffraction
curvature 1is less that in Figure 3.16b, there is more distortion
of the waveforms along the hyperbola, as more energy is
segregated on to the first principal component. The best result,
in terms of collapsing the event, was achieved with the correct
velocity of 4 km/s. The events are seen after migration in Figure
3.184d.

In the case of incorrectly migrated data, velocity thus
inferred could be used for residual migration of an original

migrated stacked section showing residual diffraction events
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(Levin et'al;, 1983, Harlah'et al., 1983).or simply to ascertain
the‘velocity of the materials about the diffractor.. Further, = in
regions of severe faulting, this procedure may possibly serve as

a fault-edge indicator.

d. Real Data Examples.

1. Figure 3.19a shows 96 traces of stacked data, which I was
informed were time migrated. Events between traces 45 and 65 are
less continuous, and at about 1.1 s we see the right hand limb of
a diffraction hyperbola. Given that the section had been
previously migrated, but still shows evidence of diffractions, we
may conclude that the data were incorrectly migrated (probably
due to an inadequate velocity function). This opens the question
of the need for residual migration (Levin et al. 1983) and also
points to the possibility of using such diffractions to estimate
seismic velocity (Harlan ét al. 1983). Figure 3.19b shows a 92%
reconstruction which has eliminated all evidence of diffraction
events leaving only the gross, common features of the data.
However, producing a misfit reconstruction (excluding the = first
96%) clearly shows a series of diffraction events centred
throughout the zone between traces 65 and 75 (Figure 3.19c). Now
that the diffraction events have been segregated from the flat
lying events, we may perform a series of migrations on these data
in order to collapse the hypérbolae at each depth. This was done
with two specific hyperbolae in mind (indicated in Figure 3.19c).

Event A was best collapsed with a velocity of 3 km/s (Figure
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3.19d). Event B was best collapsed with a velécity of 4 km/s
(Figu:e 3.19e). In both these figures,‘I show the window of data
used for migration, and three migration results: i.e, thé best
visual result, and the result from .using a veiocity 1 km/s higher
and lower than this. The overall appearance of the migrated
difraction sections is that of migrated noise (Berkhout, 1984).
This 1is not surprising, since the majority of the data in the
diffraction section is noise. However, focussing one's attention
on the zones where the diffractions were centred can allow
selection of a suitable migration velocity. The fact that these
velocities are high raises the posibility that these particular

data were not in fact previously migrated.

e. Discussion.

Misfit reconstruction with a view to separating diffraction
events offers a new way of isolating diffractions from stacked
seismic data. The method of Harlan et al. (1983,1984) 1is
considerably more protracted. Once the diffraction events are
segregated, the residual migration technique proposed by
Levin et al. (1983) may be used to estimate correction velocities
for iterative residual migration of stacked seismic data.

As a corollary to residual migration in areas with severe
faulting, such as the North Sea, a display of the diffractions
may serve as a fault-edge indicator. This may be of use in
helping to delineate fault controlled hydrocarbon trapping

structures.
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(a). The model: a thin sheet buried at

trace 10
(b). The reflection and diffraction arrivals for a 16 Hz Ricker

1 km depth, terminating at

source wavelet, propagating in the model (a).
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FIGURE 3.1l4c
(c) The data after flattening on the reflection event.
(d) The flattened diffraction event produced separately for
comparison with later results, renormalized for plotting.
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FIGURE 3.15

(a) A 98% reconstruction of the data in 14(b) (requiring 2 of the
21 principal components). To the eye this appears to have
recovered the flattened reflection event.

(b) The misfit reconstruction of the data in 14(b) (principal
components 3 - 21) renormalized for plotting. For the most part,
the isolated diffraction limb is faithfully reproduced. However,
where interference had distorted the original limb, the misfit
reconstruction is subject to distortion. Where the diffraction
runs into the reflection, they are inseparable, as the waveforms

are the same.
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FIGURE 3.16
(a) A zero offset seismic section over a buried horizontal sheet
(see sketch in Figure 3.14(a)) which terminates at trace 10,
giving rise to reflection events, and diffraction events centred
about trace 10.
(b) The diffraction events produced separately for comparison to
subsequent results; renormalized for plotting.
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FIGURE 3.17

(a) The 97% reconstruction of the data in 16(a) (requiring 1 of
the 21 principal components).
(b) The misfit reconstruction of the-data in 16(a) (principal

components 2 - 21) has successfully isolated the diffraction
event. Phase and amplitude information are well conserved, as is
seen in comparison with 16(b). Renormalized for plotting.
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Region A of the misfit reconstruction (Figure 3.19c). Migrations
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has been flattened best using 3000 m/s. The data have been
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SECTION 3.IV: MULTIPLE SUPPRESSION.

a. Introduction,

For the purpose of-'multiple suppression, I utilize the
energy packing property_of the real KL transform. The idea here
is to segregate the energy asséciated.with the multiples‘ onto a
single principal component. A data reconstruction omitting that

principal component should be essentially multiple-free.

I proceed in five basic steps:

i, From the standard velocity analysis, identify the
velocity and onset time for a multiple.

ii. Using the RMS velocity associated with the multiple,
perform a constant velocity moveout correction on the seismic
data. We note at this stage that the arrivals due to multiples
will have been more or less_flattened, whereas the primary events
are under or over corrected, and will have increased curvature in
the section.

iii. Compute the KL transform of the constant velocity
moveout corrected data set. Correlated energy in the seismogram
which had a moveout velocity equal to that of the multiple's
velocity will now appear predominantly on the first principal
component. This is because coherent energy having the velocity
associated with the multiple has been flattened, or aligned

across the section, and will now appear to be the most highly
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correlated energy.

iv. Reéonstruct the« constant velocity moveouf corrected
seismdg:am from the principal components but omit the first
’prihqipal component, i.e. leave out any correlated energy
associafed with the vélocity of the multiple. It may also be
advantageous to omit the second principal component when the
multiple arrival's wavefo;m-'has been severely distorted by
interfering primary events.

v. Remove the moveout stretching from the reconstructed data

using the same velocity as in step ii.

The procedure is repeated for all multiples for which
suppression is desired, and then the usual NMO correction to
align the data prior to stacking is applied. Ryu (1982) addressed
the problem of multiple suppression using the FK transformation
in conjunction with data stretching via moveout «correction.
However, the approach described here is a new and alternative
one, Aand will not be as prone to the aliasing pfoblems
encountered with the FK method when dealing with a small number

of traces (D. Hampson, pers. comm., 1985).

b. Synthetic Data Examples.

1. In Figure 3.20a, I 'show a simple synthetic seismic
section representing reflection events from 9 flat layers over a
half space, all overlain by water. Included are two events due to

'multiple' travel paths in the surficial water layer (indicated
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by .arrowé).b Figufe 3.20b shows the semblanée velocity analysis
(VA) (Neidell and Taner, 1971) of this data. . We ‘see 'multiple’
energy at 1.1 and 1.65'séconds withva'characteristic velocity of
1450 m/s. Figure 3.21a shows the data after a constant velocity
NMO correction. Note how  this' procedure has flattened the
multiple events at 1.1 and 1.65 seconds. Starting just after the
primary event at 1.0 s (Figure 3.2%a), a real KL decomposition of
the section is carried out. Recbnstruction omitting the first and
second - principal components gives the results in Figure 3.21b.
The effect of moveout stretching is then removed from the data
using the velocity 1450 ﬁ/s (Figure 3.22a). Figure 3.22b shows a
VA of the data after multiple suppression processing. We note by
comparison with Figqure 3.20 that the multiples have been
effectively removed from the data, and that the VA shows only the
primary bottom reflection with the water velocity. Figure 3.23a
shows the multiple suppressed déta after a conventional NMO prior
to stack. 1In Figure 3.23b, we see a comparison of the trace
resulting from: (1) the stack of synthetic data which never had
the multiple arrivals; (2) the conventional stack of the data
with multiples; and (3) the conventional stéck of the data after

multiple suppression using the KL technigue.

A comparison of Figures 3.23b (2) and (3) shows that the
multiples at 1.1 and 1.65 s have been successfully suppressed.
The noise introduced to the section after removal of the first

two principal components (Figure 3.21b) did not stack
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With a view to automation, the algorithm was modified to
automatically detect the multiples, i.e. their RMS velocity and
onse£ time. To this end, a stack of overlapping time segments of
the VA map was made. In Figure 3.20b we saw that multiple energy
:is reasonébly vertical along a 1locus of constant velocity,
whereas the stacking velocity trajectory is not. Consequently, we
expect a stack of time segments of the VA map to display maxima
at the location of the velocity of each multiple. These maxima
are detected, and the processing is started for a given multiple
just after the onset of that multiple so as not to suppress the
primary. Figure 3.20c shows a stack of the first half of Figure
3.20b. We see a peak at 1450 m/s which corresponds to the

observed trend in the VA map.

In Figure 3.20c a maximum appears at the velocity of the
multiple (1450 m/s). However, the stack alsc shows maxima at
1700 m/s corresponding to the primary events between 0.85 and
1.10 s, and at 2000 m/s corresponding to the primary event at
1.28 s. Care must be taken so as not to allow the program to
suppress primary events on the basis of these maxima. On the
whole, the automatic mode must be treated cautiously, but works
well if we only wish to suppress multiples with one

characteristic velocity: usually water bottom multiples.
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c. Real Data Examples.

Of greater interest is the performance of the algorithm on
real seismic data when multiples. pose a problem.

1. Figure 3.24 shbws a CDP gather of marine seismic data
shot off Sable Island, Canada. Each gather has 60 traces sampled
at 4 ms, but to reduce expense, only every third trace was. used
here. Figure 3.25a shows a broad velocity band VA of the gather.
We see a dominant trend of multiple energy at 1620 m/s starting
at 0.5 seconds. Figure 3.25b shows a stack of the VA map,
highlighting the presence of the multiples: this information 1is
used to detect the multiples for the program's automatic multiple
suppression mode. Figure 3.25c shows the VA of Figure 3.24 after
multiple suppression wusing an automatically picked velocity
(1620 m/s). Note the absence of the band of multiple energy
between 0.5 and 3.4 s. Note also how the event at 2.2 s and
2400 m/s has been enhanced in the multiple suppressed VA, as it

is no longer obscured by arrivals due to multiple travel paths.

Twenty gathers of data were processed in this way, and a
comparison of the conventionally stacked data with a stack of the
multiple suppressed data is made in Figure 3.26a and b. The most
noticeable features which differ between the multiple suppressed
stack and the conventional stack are: the absence of the event at

0.91 s (marked 'A') in the multiple suppressed section, which
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.appears as. part of>a-'d0ublet' in the unprocessed data, and the
changes at 1.35 s (markedb‘B').'Several-évents are clearer in the
multiple supbressed section, such as that at 0.86 s ('C'), the
trough at 1.10 s ('D'), and the pair at 2.45 and 2.55 s ('E').
Subtracting these two. sections yields a difference‘ section
(Figure 3.26c) which émphasizes the location and nafure of the
differences between the processed and unprocessed data. Bands of

multiple related energy are seen with 0.44 s spacing.

d. Discussion.

Multiple arrivals often pose a serious problem in shallow
. water and certain land environments. Simple and effective methods
for the elimination of multiple events of known stacking velocity
are of wuse in alleviating these problems. Here I present an
intuitively simple method for isolating and removing multiple
events prior to final moveout correction and stack. On simple
layered earth model synthetic data, the method has worked well.
On the small sample of real data analysed, the VA maps highlight
the almost complete absence of multiple related energy after
processing. In addition, primary events which were of small
amplitude in the VA map before processing were greatly enhanced,
because the actual data hyperbola corresponding to the primary
event was no longer masked by multiple energy arriving at the

same time,
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The. fesults on the_basislof 'before and after' VA maps look
very promising,:and initial tests on fwenty gathers'show: several
noticeable diffefences, ﬁheir VA maps showing that a significant
number of multiple events have been removed. In adaitioh,- the
actual waveforms are essentially_uncorfUpted by the processing:

an important point to note.
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FIGURE 3.20
(a) The seismic representation of reflections from 9 layers
overlying a half space, all overlain by water. The data have been
muted and AGC'd. Two water bottom multiple events can be seen:
the first, polarity reversed at 1.1 s, the second at 1.65 s.
(b) The velocity analysis (VA) of the data. Note the peaks due to
the multiples with a velocity of 1450 m/s which dominate the
lower portion of the VA.
(c) Stack of the first half of the VA map (b). As multiple events
tend to lie vertically in the VA map, they will stack to produce
a maximum, whereas comparatively, primary events will not.
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(a) A segment of the data after move-out correction with a
constant velocity of 1450 m/s. Notice how the two events due to
multiple arrivals have been flattened.
(b) A misfit reconstruction of the flattened data omitting the
first 2 principal components. Some residual noise remains in the
locations formerly occupied by the multiple events, but this 1is
largely incoherent, and will not stack to produce a notlceable

effect.
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FIGURE 3.22

(a) The reconstructed data, after the effects of the constant
velocity moveout correction have been removed, embedded back into
the original data, replacing the segment which contained the
multiples.

(b) The VA of the data after multiple suppression. Note that 1in
the absence of multiples (which were energetic events) the
correct VA trend can be more readily discerned than in 3.20(b).
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FIGURE 3.23

(a) The multiple suppressed data after normal moveout correction
using a velocity function picked from 3.22b. The residual events
remaining from the multiples can still be seen, but these do not
stack constructively.

(b) Three versions of a stack of the data: (1) the stack of a
synthetic data set produced without multiples: this 1is our
desired, or optimum result; (2) the stack of the data in 3.20(a)
after NMO correction. Notice the multiple arrivals at 1.1 and
1.65 s which stacked constructively; and (3) the stack of the
multiple suppressed data in 3.22(a) after NMO correction. In
comparison with (2) we note the absence of multiple events.
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FIGURE 3.25

.{(a) VA of the data in 3.24. Note the vertical trend of energy at
1620 m/s due to water bottom related multiples.

(b) The stack of the VA map above. The maximum at 1620 m/s was
detected by the algorithm and subsequently used as the multiple
suppression velocity.

(c) The VA map of the section after multiple suppression. Note
the absence of energy at 1620 m/s after 0.5 s, and the
enhancement of the primary arrival peak at 2.2 s with velocity
2400 m/s.
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FI1GURE 3.26
(a) The conventional stack of 20 gathers.
(b) The same gathers after multiple suppression wusing the
automatically located multiple velocity of 1620 m/s. Note the
absence of the event at 0.91 s (A) and changes at 1.35 s (B).
Also note the enhancement of events at 0.86 s (C), 1.10 s (D),
and the pair at 2.45 and 2.55 s (E). Only the processed section
of the gathers has been plotted here.
(c) The difference section, to emphasize the location and nature
of the differences between the procesed and unprocessed data.
Bands of energy associated with the multiples appear at about
0.44 s intervals, indicated by the arrows.
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CHAPTER 4.

SIMILARITY MEASURES.

SECTION 4.,1: TRACE CLUSTER ANALYSIS,

a. Introduction.

Recall that the eigenvector elements from equation (5) are
simply the weights applied to each input trace to construct a
given principal component. We infer that if a group of traces
(group 1, say) has the same weight for the first principal
component, then those traces are similar to each other. If we
then see another group of traces (group 2, say) which had
weightings which differed from those of group 1, but were similar
within group 2, we infer that the traces in group 2 are similar

to each other but different from the members of group 1.

In this way one may strive to recognise natural groupings
within a multichannel data set. To be meaningful, such a
procedure must only consider a narrow time window centred about a
particular event. In effect, we will be searching for both
changes in character and repetitions of certain characteristics

along the horizon in the window.

Milligan et al. (1978) considered the above problem for the
case of 'acoustic pinger' data whilst mapping the distribution of

bottom sediments in a shallow bay. They analysed the bottom
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reflection pulse;-and proceeded to correlate the pulSe character
with known bottom sediment type with considerable success. They
implemented the KL transform via equation (6), because they had

many more traces than time samples, and derived the eigenvector

elements by correlation.

Hagen (1982) tried to adapt their method for application to
seismic - reflection data to facilitate the recognition of
stratigraphic character change; He noted that the 'instantaneous
phase' (Taner et al., 1977) was sometimes indicative of porosity
(a large instantaneous phase corresponding to a large value of
porosity) and decided to perform the KL decomposition of the
Instantaneous Phase representation of his data. He used the
dominant eigenvectors associated with the KL transform as the
input for a <cluster analysis routine, and sea}ched for natural
groupings of eigenvector elements, as well as for groupings about
user defined 1locations. With a single real KL transform, he was
limited to obtaining the -eigenstructure of the Instantaneous
Phase data alone. However, since the introduction of the complex
KL transform (Levy et al., 1983) we may obtain the eigenstructure

of the complex trace of the original data.

In synthetic data examples, I found that the features which
dominated seismic trace clustering were the gross structural
changes in the data, e.g. fault offsets or steep dips. Subtler
variations in the data such as phase drifts, or other changes in

wavelet character could only be isolated when gross structural
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features were absent.

A problem with the example cbnsidered by Hagen (1982, Figure
2; reproduted in Figure 4.1a) is that the upper event (positive
peaks at about 1.66 seconds) pinches-out or joins with the lower
event near traces 155 and 225. Also, the data were not levelled
on the 1layer 1in the zone énalysed. Cbnsequently there is a two
fold gross chéracter perturbation to -.an otherwise flét lying
structure. As expected, we see 1in Figure 4.1b, the first and:
second eigenvectors roughly in antiphase (Hagen 1982, Figure 6;
reproduced in Figure 4.1b) and showing gross character cﬁanges
near traces 170 and 215. So, to a first approximation, Hagen's
user defined clustering about traces 214 and 230 will simply tell
us which traces lie in the flat central region of the data
{containing two horizons), and which traces lie in the extremal
regions (containing only one horizon). However, 1in essencé the
method Hagen presented was sound, and I proceeded to follow his
lead and examine data sets wusing the real and complex KL

transforms.

I introduce here an alternative approach to the isolation of
subtle character change from the dominant structures. By analogy
with misfit reconstruction (defined by equation (26)), 1 perform
cluster analysis on the eigenvectors separately, or in groups,
and concentrate on determining the groupings displayed by these
analyses., This procedure would be expected to be of use when we

had subtle phase changes in an otherwise flat 1lying structure.



122

The horizon's structure 'would ddminaﬁe the first principal
component and be reflected 1in the 'makeup "of the first
eigenvector. The deviation from the horizontal struéfure would be
characterized by subsequént principal components and may be seen

in their eigenvectors.

I also diverge slightly from the approach of Hagen in that I
compute a membership probability for each of the traces with
respect to each of the groups, on the basis of the statistical
mode of the given group. That is, for the i.th seismic trace
xi(z), the probability of belonging to the j.th group Gj, on the
basis of information obtained from the k.th principal component

is given by:

P{xi(z)eGj} = [17.0 / D{r k}]/NORM

ik;wj
where:

DEr; yiwgd = Irig = vl

is the ‘'distance' of the eigenvector element Tkt from the mode
wjk’ of the eigenvector elements of the members of the j.t#h

cluster group Gj’ and:

c
NORM =

(1.0 / D{ri
J

MM

1 i)

where nc¢ is the number of cluster groups formed.
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b. Synthetic Data Examples.

To demonstrate the application of this method, I considered
four basic synthetic data.examples. The first’involved using the
first two layers of Figure 3.2a, i.e. gently dippiné layers, over
which the wavelet is progressively phase shifted, offset with a
vertical fault. Figure 4.2 shows these data, the first and second
eigenvectors (Figure 4.2b), and the cluster groupings determined
separately from them (Figure 4.2c). In this case only two groups
were needed to highlight the fault, but in general I found that
one should réquest mofe groups than one expects, so that traces
which are completely dissimilar ('bad' traces) can fall into
their own group without adversely affecting the overall results.
The results from the complex KL option were identical, whereas
the results of a run using the instantaneous phase of the data
were slightly inferior. I have displayed the cluster groupings
from the first two eigenvectors separately so as to indicate how
each side of the fault dominates a particular eigenvector. The
side of the fault with most traces dominates the system, and
appears on the first eigenvector as the most 'energetic' event.
The compound clustering mode, which combines the effects of
several eigenvectors as per equation (27), yielded these same
groupings when combining these first two eigenvectors

(corresponding to 73% of the total energy).
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In the second example, Figure 4.3, we see two flat lying
closely spaced events with a phase drift increasing to w/2'atvthe
centre, and _féiling—off ‘again to =zero at the last trace. The
dominant structure is that of two parallel horizontal layers:
consequently, the: first eigenvector shows no particular
structure. However, the second eigenvector is ‘readily able to
indicate the underlying, subtler features of the phase drift, and
yields groupings syhmetric about the centrél traces. In this
instance, the compound clustering was dominated by the second
eigenvector, as it contained the most pronounced structure, and
the groupings from the combination of the first two eigenvectors
(corresponding to 97% of the total energy) also delineated the
phase drift. Again, the results from the complex KL option were
identical, and the instantaneous phase results were slightly

inferior.

In the case of gently dipping layers (Figure 4.4) we expect
and do see a tendency for clusters to contain traces in groups
moving progressively across the section. If the data had been
flattened, these groups would not exist and no particular
grouping patterns would be evident. Consequently, groupings which
change systematically and progressively across the section will
be indicative of a dip (in the absence of phase changes). These
results are evident in the groupings for the first eigenvector.
However, the second eigenvector shows the symmetric distribution

of clusters similar to the example with a phase drift into the
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centre of the group of .traces. This 1is because the second
eigenvector is telling us. about the.residual structure, which for.
a constantly dipping layer is a series of antisymmetric_‘ététic'
time shifts. This antisymmetry in the residual structure is seen
as a symmetric pattern in the cluster ‘groupings for the second
eiéenvector, as the algoriﬁhm uses the squares of misfits to
determine the groupings. Similar results would be obtained if the
data comprised flat layers with a constant phase drift in the
waveforms - across thé event. Two such cases c¢ould not be
distinguished by this method. Again, both the real and complex KL

methods yield essentially the same results.

Finally, I consider the case of a gently dipping horizon
with an anomalous zone (in this case a hump representing a reef
or sand lens: see Figure 4.5a). Because the central hump deviates
so much from the flat lying events, the energy associated with it
is spread over several principal components. Consequently, the
groupings containing the traces in the hump can be seen in the
cluster analysis of the first 4 eigenvectors. Figure 4.5b and ¢,
shows the results for the first and fourth eigenvectors,
respectively. Both the real and complex KL methods clearly
delineate this feature, but the instantaneous phase results were

poor.
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c. Real Data Examples.

1. The first real data example (Figure 4.6) is of 100 ﬁraces
from a predominantly flat lying zone.bThe strong upper event (1)
dominates the structural character, whilelﬁhe weak intermiﬁtent
event (2) and the lower discontinuous event ‘(35 are less
cdherent. The first eigenvector showed no. particularly
significant groupings. However, the second eigenvector (Figure
4.6b), shows three main groups, whigh correspond to (A) thé
predominant flat lying structure between traces 1 énd 45, (B) the
zones containing the deep trough at 0.61 s (traces 18 - 28, and
38 - 54), and (C) the fairly uniform zone between traces 73 and
94. The third and fourth eigenvectors (Figure 4.6c and d) also

emphasize the location of the disrupted central zone.

2. The second real data example comprises events offset by a
fault near trace 58 (Figure 4.7): to the right of the fault the
horizons drop slightly. The cluster group membership, based on
the first three eigenvectors, is shown below (Figure 4.7b, ¢, and
d). For the first eigenvector, the first group, A, contains most
of the traces to the left of the fault. However,, a small anomaly
(B) clearly shows wup 1in the groupings; namely traces 33 - 40:
this corresonds to the anomaly at 1.66 s. To the. right of the
fault, a third group C brackets traces 60 to 76, and may

delineate a second fault to the right near trace 80 at 1.6 s.
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Thev groupings détermined on the basis of the second
eigenvector shbw a symmetric péttern belyihg the symmetry about
the central fault. These groupings' are symmetric rather than‘
antisymmetric, as the <clustering criterion was based on fhe
squares of differences. The tﬁird eigenveétor again clearly

denotes the central fault.

3. The next example, of 96 traces, 1is of an event which
undergoes a marked character change across the section (Figure
4.8). This can be seen in the two eigenvectors (Figure 4.8b and
c). Also of interest here 1is the appearance of the third
eigenvector (Figure 4.8d), which <clearly denotes the slight
discontinuities at 2.04 s near trace 20 and again near trace 36,
and the truncation of the event near trace 85 (these

discontinuities are marked in the figure).

4, In the final example (Figure 4.9), I show a 0.1 s window
of data from a sand bar. The bar is seen at about 0.68 s, between
traces 29 and 70. In this case, the first eigenvector clusterings
delineate a group in the region of the bar (B) bracketed by
members of a different group (A) (Figure 4.9b). In the second
eigenvector (Figure 4.9c), we also note a discontinuity between
traces 65 - 85, where the reflection character of the upper event
(at 0.67 s) changes, becoming stronger. The third eigenvector
(Figure 4.9d) resembles the first in that it denotes a central

group flanked by members of a second group.
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d. Discussion.

For data in which the dominant structures are parallel,
cluster analysis may provide a useful tool to aid the
explorationist in locating unuﬁual featufes. Much depends on the
presentation of these data. A colour overlaying technique of
presentation may prove quite useful in conveying the information

clearly.

Features such as fault boundaries, pinch-outs, and lenses,
all fall 1in the category of structures for which the method has
the potential of identifying as being 'different'. However, as
with many novel techniques, muﬁh interactive study is necessary
in order to assess the full potential (if any) of the method.
Comprehensive analysis of well studied areas ié needed to give an
outline of the reliability and meaning of the results seen in the
cluster groups. This can most readily be accomplished in an

environment where the appropriate data sets are available.

The major pitfall with this technique is likely to be its
sensitivity to non-parallelism in the input data. In this regard,
cluster analysis on the basis of eigenvector elements suffers
from the same problem as does the misfit reconstruction technique

presented earlier.
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FIGURE 4.1

(a) The data used by Hagen (1982) for his cluster analysis. Note
%he central pair of events which are flanked by single horizons
A).

(b) The first three eigenvectors for decomposition of the data in
(a). Note the antiphase relationship between the first and second
eigenvectors, and how the character change coincides with the
pinch-outs of the flat central region of the data (diagrams from

Hagen, 1982).
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(a) The seismic representation of the upper two layers dipping at
about 2 ms per trace, offset by a vertical fault.
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The first two eigenvectors (a
either side

memberships denoted on them. Note how the traces on
of the fault fall into separate groups.
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FIGURE 4.4
(a) The seismic representation of two layers dipping at 2 ms

per

trace.

(b) The first eigenvector delineates groupings with trace
membership moving progressively across the section. This is
characteristic of a dip, or of a constant phase drift over flat

layers.
(c) The second eigenvector delineates the residual structure,
which for a constantly dipping layer is an antisymmetric feature.
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FIGURE 4.5
(a) The seismic representation of two flat layers with a central

hump.
The first (b) and fourth (c) eigenvectors clearly delineate this

feature.
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(a) One hundred traces from a real stacked seismic section, with
three characteristic events: the strong upper event (1), the weak
intermittent event (2), and the 1lower event (3). The first
eigenvector is fairly flat, hence shows no clear groupings and is
not shown.

(b) The second eigenvector shows three major groups which
correspond to (A) the flat lying structure between traces 1 and
45,()the deep trough at 0.61 s (traces 18-28 and 38-54), and (C)
the fairly uniform zone between traces 73 and 94.

(c) The third eigenvector appears to reflect character change in
the trough below the first event (1), while the fourth
eigenvector (d), again demarcates events to the right and left of

the central discontinuous zone.
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(a) Ninety six traces from a faulted zone.

(b) For the first eigenvector (1), group (A) contains most of the
traces to the left of the fault. A small anomaly (B) can be seen
between traces 33 to 40 at 1.66 s. To the right, a third group
may delineate a second fault (C) near trace 76.

(c) The groupings from the second eigenvector show a symmetric
pattern belying the symmetry about the central fault, as does the

third eigenvector (d).
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traces which change noticeably in character across

belie this

(d) The clusterings from the third eigenvector clearly denote
changes in the data: namely discontinuities near trace 20

subtle

and trace 36 at 2.04 s,

(marked #1, #2, and #3, respectively).

the truncation of the event near trace 85
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(a) One hundred trace of 0.1 s of data from a region of braided
sand lenses, in a potential production zone. Note the persistance
of a thin positive event at 0.68 s, between traces 29 and 70.

In this case, the <cluserings from both the first and second
eigenvectors (b and c) delineate a group in the region of the bar
(B) bracketed by members of a different group (A). Also in the
second eigenvector we note a discontinuity between traces 65-85
where the reflection character near 0.67 s changes, becoming
stronger (C). The third eigenvector (d) also demonstrates the
presence of a central group, flanked by members of a second group.
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SECTION 4.11: VELOCITY ANALYSIS.

a. Introduction.

In this section I show how the eigehvalues deri&ed from‘ the
covariance matrix can be wused to establish a correlation
criterion, which under certain conditions may be superior to the
commonly used semblance criterion (eg. Neidel and Taner, 1971).
With x(m) defined in equation (21) we note for normalized input
traces that 1if x(1) = o the signals are perfectly correlated

while if x(1) = I1,(n-1) then the signals are nearly orthogonal.

b. The Effects of Static Shifts.

For wavelets which have been offset by a static shift we
also expect x(I1) to provide a good indication of the correlation
if the amount of static shift is less than that prescribed by
equation (33). As the static shift increases however, it will be
impossible to represent the signal energy in terms of a single
principal component; more principal components will be required.
So, for the CKL velocity analysis (VA), a wavelet displaced by a
small static time shift will be rotated so as to appear more
coherent, and the VA should be less sensitive to the degrading

effects of the time shifts,
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c. Synthetic Data Examples.

In the following trials, the width of the VA time window was
set to 16 samples, abbut 2/3 of the wavelet width. As the window
was ﬁarrowed or broadened, the results for both semblance and KL
VA methods deteriorated, as expected, because with a window which
is too wide most events appear dissimilar, while with a very
.narrow window most events look similar, in that they are fairly

constant. and will have a large common mean component.

To demonstrate the performance of semblance versus the real
and complex KL modified eigenvalue ratio, I consider the case of
a single event (at 1 s, with an associated velocity of 1500 m/s).
Twelve traces (Figure 4.10) were progressively subjected to
static time shifts, ranging from zero to a maximum of < + 8 time
samples. In Figure 4.11 we see in the left column the semblance
VA for static time shifts of < + 0, + 2, #+ 4, + 6, and * 8 time
samples. The peak (at 1500 m/s, and 1.0 s) is quickly smeared as
the static shift increases. Also note the vertical smearing
characteristic of semblance VA results. On the right of the
figure are shown the results of an RKL VA for each of several
x(m) values for each static time shift. Note how the peak of the
RKL VA <can still be identified even at large static shifts by
increasing the number of eigenvalueé in the numerator of equation

(21) (i.e. increasing m in x(m)). This effectively includes more
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of the signal related energy»in'thevnumeratOr of equation (21).

This excercise was. repeated for the CKL VA, and the
comparison 'with semblance results made .again (Figure 4.12).
Again, the KL VA method is readily able to denote the location of

the peak as static time shifts are introduced.

Similar trials were performed for the case of increasing
white noise levels. In this 1instance nothing was gained by
increasing the number of eigenvalues in the numerator of equation
(21). This is because white noiée adds energy uniformally to the
diagonal of the covariance matrix and increasing the number of
elements on the top line merely includes more noise energy in the
numerator. A comparison of the semblénce, RKL and CKL VA results
are shown for 5 noise levels (40, 55, 70, 85, and 100%) in Figure
4.13). Although the semblance results degrade severely with
increase in noise level, they remain superior to both the KL Vva
results. In other words, the KL VA method is more sensitive to
high noise 1levels than 1is the semblance. However, at moderate
noise levels (<30% by maximum amplitude) the KL methods are

superior.

To examine the resolution of closely spaced 'thin beds', I
repeated the above example with a four layer model. In the
previous example, the velocity was quite low and hence the
moveout was pronounced and the algorithms all worked well.

Increasing the velocity reduces the curvature, and we expect to
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see a smearing of the peaks in the VA map. Figure 4.14.shows the
12 synthetic seismograms, sampled at 4 ms, representing the threé
interface reflections from four layers (with thicknéss and
velocity: 1800 m, 1800 m/s; 50 m, 1850 m/s; 50 m, 1900 m/s; and
50 m, 1950 m/s respectively). Note that in such a model, the
stacking velocities change very 1little. The results from the
semblance, RKL and CKL VA's are shown in Figure 4.15 (the first
three x(m) criteria VA's for the KL funs are shown). The RKL
result for x(2) separates the three events, whereas the CKL x(1)
VA does less. well and the CKL x(2) VA is somewhat smeared,
although the three events can be seen. The semblance VA fails
completely, and smears the triplet 1into a vague zone of high
amplitude. This indicates that the KL method should be better
able to resolve proximal events. However, this conclusion is not

confirmed by the majority of subsequent results.

In the following synthetic data examples, 1 present the case
of a multilayered reflection sequence. The 1input seismograms,
sampled at 4 ms, Figure 4.16a correponding to the adjacent
layered earth model (b), were contaminated by a small amount of
white noise (up to 5% of the maximum signal amplitude), primarily
to stabilize the performance of the algorithm at zones where no
signal 1is present. The results of the semblance, RKL, and CKL
velocity analyses are shown after gain control in Figure 4.17a,

b, and c, respectively.
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We - see that the KL résults.(preéented for x(1), x(2), and
x(3),vrespectively) give better temporal resolution of events
than does the semblance. This has' important advantages when
stacking velocities are to be inverted to récover inter§al
velocities. However, the semblance results are fairly evenly
balanced and will also yield a good stacking velocity curvé. None
of the VA maps in this example was able to delineate the cehtral
peak of the triplet at 1.06 s from its adjacent peaks (at about

1.00 and 1.12 s, respectively).

In the next example I demonstrate the performance of the VA
algorithms when statics are present. Static shifts with values as
large as +12 ms are introduced (by deleting or adding zeroces to
the start of each trace). Consequently more than one principal
component is needed to représent the signal energy, and x(3) was
visually chosen as the best correlation criterion. The data,
contaminated with statics are shown in Figure 4.18. The VA
results (Figure 4.19a, b, and c¢) are considerably worse than
those in Figure 4.17, but the peaks exhibited by the x(2) and
x(3) 'plots for both the RKL and CKL VA's are at the correct
velocities. On the other hand, the semblance results are smeared
and multiple peaks appear for certain times (e.g. at 1.34 seconds

where the semblance power is large).
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d. Real Data Examples.

The 16 traces shown 1in Figure 4.20a are taken from a CSP
gather shot in northern Alberta‘by Chevron Canada Resources Ltd.
The offsets range from 582 to 1662 m, with a geophone spacing of
72 m, and the basement is at 1.6 s. For this examination, I have
selected data so as to provide 1.2 s of zero offset time in the

VA map.

The semblance results (Fiqure 4.20b) show a .smeared
trajectory, but picks can readily be made down to 1 s. In an
attempt to determine a good x(m) to use in the KL VA, I selected
two small windows: one from 0.0 - 0.2 s, and one from
0.9 - 1.1 s, A comparison of results for semblaﬁce, RKL, énd CKL
VA's 1s shown in Figure 4.21 for thé two windows repectively.
Both the RKL and CKL results suggested using x(1), x(2), or x(3).
The RKL and CKL VA maps for the complete data sample are shown
for all three x(m) values, after application of an AGC operator,

in Figures 4.22 and 4.23, respectively.

A major problem that arises with both the KL VA methods is
the lack of consistency down the VA map. A x(/) <criterion works
well at the start of the map, but not later. None work well in
the region near 0.4 s; the x(2) and x(3) criteria work well at
greater times. The general trends are those expected, i.e. we

need to increase m in x(m) with increasing time, as the moveout
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'hYperbolae~are becomihg»flattér and static shifts will be more

noticable.

The second real data set I exémine, was collected during the
UBC-RECOPE project 1in Costa Rica 1in 1982 (von Breymann and
Clowes, pers. comm., 1984). It consists of wide_angle reflection
data shot with an airgun 1in deep water (>2 km) (see Figure
4.24a). The offsets for the data subset I <consider range from
1630 to 4415 m with an average receiver spacing of 120 m. The VA
maps span the zero offset two way travel time windéw 2.9 to 4.4 s

(the water bottom reflection comes in at about 3.0 s).

To determine which x(m) criterion to use for the KL VA's,
two small time windows were chosen (at 3.0 and 4.0 s: see Figure
4.25). However, these proved to be misleading, as the best
overall results were obtained using x(/) and x(2), and not with
x(4) as suggested by the sample windows. The results from the
semblance, RKL, and CKL VA's are shown after AGC in Figures
4.24b, 4.26, and 4.27, respectively. For the KL VA's, results for

both x(7) and x(2) are shown.,

From the semblance map, picks can be made for:

T = 2.95 s, VRMS = 1500 m/s;
T = 3.50 s, VRMS = 1600 m/s;: and
T = 4.25 s, V = 1700 m/s.

RMS
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From the RKL maps (x(I) and x(2)), picks cén be made for:

T = 2.95 s, VRMS = 1500 m/s;
T = 3.04 s, VRMS = 1550 m/s}
T = 3.18 s, VRMS = 1580 m/s;
T = 3.45 s, VRMS = 1650 m/s; and
T = 4.23 s, VRMS = 1710 m/s:

And from the CKL maps (x(/) and x(2)), picks can be made for:

T = 2.95 s, VRMS = 1500 m/s;
7 = 3.04 s,VRMS = 1550 m/s;
T = 3.18 s, VRMS = 1580 m/s;
T = 3.45 s, VRMS = 1640 m/s;
T = 3.90 s, VRMS = 1690 m/s;
T = 4.45 5, Vpuo = 1750 m/s;

- In the RKL VA maps, some double arrivals are seen (e.g. at
3.20 and 4.43 s) which are probably due to the internal structure
of the wavelet being resolved, i.e. the map shows the reflections
from the leading and trailing edges of the downgoing wavelet. all
the KL VA's were dissapointing in their general appearance, as I
had expected greater clarity and definition of arrivals.
Decreasing AV (the VA velocity increment) from 50 to 25 m/s
improved the semblance, but not the KL results. Band passing the
data from its original 2 - 85.Hz down to 5 - 50 Hz again did not
improve the KL VA's. Bandpassing should reduce the amount of
uncorrelated high frequency energy, and thus reduce the

degradation of the x(m) criterion. Uncorrelated high frequency
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enérgy ~would act as white noise, adding power uniformally to the

covariance matrix diagonal and degrading x(m).

e. Discussion.

The eigenvalue ratio similarity criterion constitutes a
highly sensitive similarity measure. However, with real data the
measure seems to fail severely for noisy data. In a complicated
CDP gather with many interfering moveout hyperbolae, the CKL
method will be able to rotate most waveforms and make them so
similar that the VA will have maxima at spurious 7 and V

RMS
locations. Therefore, this method must be treated cautiously.

For early arrivals, such as those seen in the real data
example of Figure 4.21,- the KL method works very well in
comparison to the semblance VA. However, for the real data
example with higher noise 1levels (Figure 4.25) the semblance
result is clearly superior. The technique may thus prove to be of

use for high resolution near surface velocity inversion problems.
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FIGURE 4.10
Twelve traces representing reflections from the base of a layer
750 m thick with velocity 1500 m/s. Offsets range from 0 " to
2000 m.
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Left column: Semblance criterion VA for progressively increasing
static time shifts; down the column: up to 0, *2, +4, +6, %8
sample points (i.e. 0, *8, +16, +24, 32 ms).

Second left to far right: RKL eigenvalue ratio criterion; columns
for x(1), x(2), ..., x(8).
As the static scatter increases, the semblance VA breaks down and
is unable to reliably locate the peak corresponding to the
arrival. For the RKL VA, we note how a progressing increase in m,
in x(m), counteracts the degrading effect of an increase 1in
static scatter. The velocity tick marks are separated by 50 m/s.
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_ FIGURE 4.12
Left column: Semblance criterion VA for progressively increasing
static time shifts; down the column: up to 0, *2, *4, +6, %8
sample points (i.e. 0, %8, *16, 124, %32 ms).
Second left to far right: CKL eigenvalue ratio criterion; columns
for x(1), x(2), ..., x(8).
As the static scatter increases, the semblance VA breaks down and
is unable to reliably locate the peak corresponding to the
arrival. For the CKL VA, we note how a progressing increase in m,
in x(m), counteracts the degrading effect of an increase in
static scatter. The velocity tick marks are separated by 50 m/s.
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The effect of increasing random noise levels (down the columns:
40, 55, 70, 85, and 100% of the maximum amplitude) on semblance
(far left) and KL VA's. Centre are the RKL results, far right are
the CKL results. An increase in m in x(m) does not improve the
result for added random noise. This is because white noise adds
energy to the diagonal of the covariance matrix uniformally,
degrading the similarity measure for all m (see text). As -the
noise level 1increases, the semblance VA results are able to
reliably locate the maximum, but, due to the increase in energy
all along the covariance diagonal, the KL VA maxima are lost in
the background noise. The velocity tick marks are at 50 m/s.
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FIGURE 4.14
Twelve synthetic seismograms representing reflections from three
closely spaced interfaces (50 m apart). Offsets range from 0 to

2000 m.
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VA results for the three reflection events. The semblance VA
smears the events and is unable to resolve them. However, both KL
VA's are well able to distinguish the outer two events, and the
RKL x(2) and CKL x(3) VA's indicate the possibility of a third
central event. In both these VA's, the outer event appears at
about 2,125 s, which is a bit late. True 7 and V /S values are:
1800 m/s at 2.0 s, 1801 m/s at 2.06, and 1804 m/s &&°2.11 s. The

velocity tick marks are at 50 m/s.
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synthetic - seismograms (a) representing reflections from
layers, as shown in (b). Offsets range from 0 to 2000 m.
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FIGURE 4.17a
For the data of Figure 4.16, the semblance VA (a) gives a fairly
consistent picture of smeared arrivals, however, the stacking
velocity trajectory can readily be picked. The solid line is the
true 7V, o locus. The velocity tick marks are at 50 m/s.
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FIGURE 4.17b
The RKL method (for x(1), x(2), and x(3)) gives a much sharper
definition of events, and all except x(/) have given a clear
delineation of the very first event (at 0.6 s, and 1550 m/s),
whereas the semblance VA gives a spurious value of 1600 m/s for
this arrival. However, the semblance VA gives a clear indication
of the presence of the event at 1.05 s, whereas the RKL VA does
not. The solid line is the true 7-Vp, locus. The velocity tick
1S
marks are at 50 m/s.
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FIGURE 4.17c
The CKL method (for x(1), x(2), and x(3)) gives a much sharper
definition of events, and all have given a clear delineation of
the very first event (at 0.6 s, and 1550 m/s), whereas the
semblance VA gives a spurious value of 1600 m/s for this arrival.
However, the semblance VA gives a clear indication of the
presence of the event at 1.05 s, whereas the CKL VA does not. The
solid 1line is the true T—VRMS locus. The velocity tick marks are

at 50 m/s.
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FIGURE 4.19a
In the case with static time shifts, the semblance VA of the data
(Figure 4.18) performs poorly. The solid line is the true 7-¥p,
locus. The velocity tick marks are at 50 m/s.
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FIGURE 4.19b
For the RKL VA of the data (Figure 4.18), the VA maps for x(2)
and x(3) are able to resolve the majority of the reflection
events. The solid line 1is the true TV pus locus. The velocity

tick marks are at 50 m/s.
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FIGURE 4.19c
For the CKL VA of the data (Figure 4.18), all three VA maps, are
able to resolve the majority of the reflection events. The solid
line 1is the true T—VRMS locus. The velocity tick marks are at

50 m/s.
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(a). Three seconds of 2 ms reflection seismic data for 16 offsets
(582 to 1662 m) after bandpass filtering (8 to 55 Hz), mute, and
application of an AGC. The basement is at about 1.62 s. (b). The
stacking velocity 1locus can be

semblance VA of this data: a
picked for several points. The velocity tick marks are at 50 m/s.
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FIGURE 4.21
Sample VA maps for 0.2 s of data in two time windows. These
results were wused to determine a good choice of x(m) to use in
the KL VA's. At 0.2 s (left), the RKL VA for x(2) and x(3)
picks-out two distinct events corresponding to a smeared
equivalent in the semblance VA map. The CKL VA only delineates
one event. For the window at 1.0 s (right), RKL x(2) and CKL x(1I)
delineate a single event, whereas the semblance is again smeared.

The velocity tick marks are at 50 m/s.
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FIGURE 4.22
RKL results for x(1), x(2), and x(3) for the data seen in Figure
4.20. Although individual events are sharper than those of the
semblance VA map, the general picture is less convincing. Events
are well resolved at early times, but by 0.4 s, events have
started to disappear. The x(3) map gives a clear pick at 1 s, but
the preceding events seen in the semblance VA map at 0.85 s, 1is

absent. *
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FIGURE 4.23
CKL results for x(1), x(2), and x(3) for the data of Figure 4.20.
As with the RKL VA results, these VA maps are poorly balanced.
Resolution at early times is good, but deteriorates markedly past
0.3 s. Overall, these results seen less plausible than those of
the semblance VA map. The velocity tick marks are at 50 m/s.
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FIGURE 4.24
(a). A sample of the wide-angle seismic reflection data collected
during the UBC-RECOPE (Costa Rican National 0il Co.) joint
seismic project (1982). Offsets range from 1630 to 4415 m.
(b). Results of a semblance VA. Although smeared, picks can

readily be made for three primary arrivals.
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FIGURE 4.25
Two sample time windows to assist in choosing an appropriate x(m)
criterion for the KL VA of the data. The results at 3 s (left)
suggested wusing x(4) for both the RKL and CKL VA's. For the 4 s
window (right), x(3) and x(4) look promising. However, in
practice the x(1) and x(2) VA's proved to be of greater use. The
velocity tick marks are at 50 m/s.
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RKL VA results for x(/) and x(2). After much scrutiny, picks for
five RMS velocities can be made: an improvement over the
semblance VA map (see text). However, the overall appearance of
these maps is not helpful to the picking. The velocity tick marks

are at 50 m/s.
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SECTION 4.II11: Q INVERSION.

a. Introduction.

_ Both Robinson. (1979, 1982) and Beresford-Smith and Mason
(1980) developed vtechniques to facilitate the removal of
dispersive effects from seismic reflection data. Robinson (1979)
utilised the theoretical developments of Futtermann . (1962) to
produce synthetic seismograms for dispersed data, and proceeded
to show how the effects of dispersion may be removed from both
synthetic and real data for an homogeneous medium with a known Q
value (Appendix 1). Robinson (1982) extended the work in his 1979
paper to remove the effects of dispersion 1in vertically
inhomogeneous media (i.e. Q@ varying with depth). However, he
assumed that the Q structure of the reflection section was known
a priori. Beresford-Smith and Mason (1980) relied on a measure of
the degree of dispersion to estimate the dispersive properties of
the medium. - Subsequent minimization of this measure 1in an
iterative procedure was used to remove the correct amount of
distortion from each section of the data. Both these works
attacked the problem directly and should prove most useful in the
treatment of existing conventionally collected seismic reflection

data.

Ganley and Kanasewich (1979), rather than attempting to

remove the dispersive effects from the data, sought an estimate
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of ‘the’_Q bstructure for the._seismic reflection éectioh. They
" assumed that the input signal and‘the dispersion relation (again
a constant Q model) were known. Usihg the complex spectral ratio
technique,.they divided-out the non—dispérsed inpuﬁ signal from
the dispersed data to obtain the cumplative, and thence interval,

Q values.

Attention was also directed to this problem at the Stanford
Q Conference (1980), and by Smith and Neidel (1976), Toksoz and

Johnson (1981), McMechan and Yedlin (1981), and Rafipour (1981).

b. An Iterative Dispersion Removal Scheme Using an Effective-Q

Value

Following bthe approach of Robinson (13979) outlined in
Appendix 1, the constant Q model was employed to undisperse a
segment of data using a specific Q value. Here I diverge from his
approach and repeat the procedure for a suite of Q values, at
each iteration computing a similarity measure x(1), between a
reference wavelet and the undispersed signal, or between the
members of a suite of wundispersed signals. Inspection of the
function of undispersing-Q-value versus x(I) should yield a
maximum when the signals have been undispersed with the @ value
with which they were originally dispersed (by the earth). An
equivalent and alternative approach would be to disperse the

reference signal prior.to comparison with the dispersed data.
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For wavelets with large travel times, the expense of Fourier
transformingvmahy long time segments poses a problem. I introduce
here an approximation to facilitate adequate representation of a

pulse at a large time T, which travelled through -a medium with

L
quaiity factor Q,, with a pulse located at some.small time TS. I
effect this approximation by introducing an effective-Q value,
Qeff' vFor' a wavelet of duration 1less than TW centred about
arrival time TL’ I replace the time series with the same wavelet
centred in a window of width T, - After propagating for a time TL,

the waveform will suffer from a loss in amplitude given by:
A(l) = A, exp(-wl/ZQ),

which is eqﬁation (A1.1), where w 1is angular frequency. To
produce the same loss of energy, while inserting a small apparant
arrival time TS, where Ts= Tw/2, we must choose a lower

'effective' Q0 value, hence:
A(t) = Ao exp(-wTs/ZQeff)
SO
T /20, = T /2
or:
0,5 =0T, /2T, ' (37)

It 1is this ‘'effective' Q value that is used in most subsequent

processing.
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We may think of the-reasohing behind'this approkimation as
follows: for a constaht Q@ model, a Sinusoid loses a fixed
proportion of energy per cycle travelled. Conseqﬁently,-vallowiqg
a sinusoid to propagate for 100 cycles with Q = 50, incurs the
same energy loss as allowing it to pfopagate for 50 cycles with
Q = 25. 1 translate this into é_ shift - in arrival time in

conjunction with an effective Q value.

However, as noted in Appendix 1, the Futterman relation only
holds for @ wvalues down to 27, due to the approximations
involved. Consequently, if Qeff falls below 27 for a given
window, the length of the sample window 1is doubled (with the
wavelet again centred) and Qeff recalculated. The Sample window

length is increased in this way until Qeff 2 4m. .

When a reliable reference signal is available, for example a
clean near offsgt early arrival, then the subsequent, and more
dispersed signals may be compared to it. When one has a suite of
signals with similar travel paths (as along a moveout hyperbola
for example), then the entire suite of signals may be undispersed
and the suite as a whole subseqguently compared to the reference.
In this 1latter <case, each wavelet in the suite is undispersed
with its appropriate arrival time and effective @ value. The
suite as a whole will be best undispersed, hence most similar,
when the actual cumulative Q value has been used. Consequently,
the @ structure derived in this way would be absolute. If the

horizontal component of the travel paths varied greatly, the net
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effect WOUld be to average any lateral changes ih-Q.

‘c. The Constant Phase Approximation.

The iterative undispersion scheme may be used- with high
quality data in an. attempt to recover the cumulative (thence
interval) Q structure of the data. However, when the object of
the exercise is simpiy to alleviate the effects of dispersion, we

may seek a simpler and more cost effective method.

Here, I use the complex KL method to determine whether, and
under what conditions, dispersion can be approximated by a
constant phase shift, viz. xi(t)=Re[3i(t)eXp(ie)], where xi(’) is
a measured'(andAdispersed) seismogram,.and ii(z)vis the complex
trace of the wunderlying signal (Levy and Oldenburg, 1982). If
applicability can be determined the first eigenvector will be
used to estimate the shift angle e which will rotate the

dispersed trace to its undispersed form.

The changes of e over a seismic section would be indicative
of the degree of distortion of the underlying - signal. This
distortion would be brought about by phenomena such as
interference in thin layers, attenuation, dispersion, and
out-of-plane scattering. A section depicting e values would
highlight the rapidity of change 1in the propagating waveform.
With the appropriate quality of data, such a map of e values

could be used as a direct hydrocarbon indicator: a large ¢ value
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being indicative of a large'change in the signal. Such a change
may be brought about by_an-increasé.iﬁ the dispersive properties

of the medium, such as occurs in gas saturated media.

However, here I will simply demonstrate the applicability of
the constant phase shift approximation to »dispefsion - by
considering a set'of synthetic data examples and completing the
following steps:

(1) select a time window which contains a dispersed pulse;

(2) calculate the envelope of the analytic signal for the
dispersed pulse and reference pulse (initial wavelet), aligning
the peaks of the envelopes so there is no time discrepancy;

(3) apply the complex KL transformation;

(4) evaluate x(I1) and e (equation (32)).

If x(1) is large, then the dispersed signal is approximately
a phase shifted verson of the original. If x(7) = 1 then the

constant phase shift assumption is not wvalid.

The first series of examples covers the constant phase
approximation. In each of the figures pfesented, I show (1) the
reference wavelet (a Ricker wavelet of centre frequency 35 Hz,
not dispersed); (2) the dispefsed wavelet (which simulates an
arrival from a specified time); (3) the real part of the first
principal component; (4) the real part of the second principal
component, principal components from the CKL decomposition of the

two input waveforms, and (5) the dispersed waveform: (as in (2))
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rbtated by the phase angle éﬂ(from equation (32)); Figure 4,28
shows four panels, each as described‘abdve for a wavelet centred
at 0.5 seconds dispersed with ¢ valﬁes 25, 55, 85, and 115
respectively. Figure 4.29 shows the analagous results for the
case where the effects 6f attenuation are ‘included. In all

examples, the waveforms,were'aligned on the basis of complex

trace envelope.

In general, we note that the CKL algorithm is well able to
extract a signal common to the reference (1) and the dispersed
wavelet (2), with a large value of x(/). The results improve with
increasing Q value, as the dispersed waveform becomes more like a
purely phase rotated wavelet. Including the effects of
attenuation degrades the result. The phase shift required to
'correct' for the dispersion also decreases with 1increasing Q

value, as the dispersive distortion decreases.

The examples shown were fof a Ricker wavelet of centre
frequency 35 Hz. 1In Figure 4.30, I show the results of varying
the centre frequency between 15 and 55 Hz, on the 1locus of
Ln(|e]|) versus Ln(Qeff). For a fixed window length, for wavelets
with centre frequency above 10 Hz, I determined the following

empirical relationship:
Ln(lel) = 3.7 = 1.0 Ln(Q,; /T )

Here I Thave invoked my assumption that a shift in time can be

duplicated by a change in @, hence the relation involves only the
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variable Qeff’ rather than time and Q explicitly. For the 1lowest
~centre frequency considered (TS,Hz), the relationéhip is erratic
beloQ Q = 85; this is due to waveleﬁ alignment problems (manually
shifting the wavelét into alignment by one time sample moved most
of the points onto the common locus). Also, the 'constant' for
the intercept . does change with fc, ‘but for the mid-range of -
centre frequencies is about 3.7 (the dependence of the intercept
on fc is discussed in some detail later). The results were
consistent for the case with attenuation (Figure 4.31). Here, the
wavelet alignment was more of a problem, and the locus jumped
down to a subparallel trajectory for each sample point of

misalignment. Changing the length of the wavelet window T, did

not affect the slope or intercept of the curves.

The form of this relationship is not surprising, since it
gives € as being inversely proportional to the effective Q value,

Qeff’ or:

lel = cc2r, /Q) (38)
where C = exp(3.7) = 45

This formulation also raises the possibility of estimating Q@

directly from the estimated phase shift e,

To see the form of this relationship from an analytical
viewpoint, I consider the problem in the frequency domain. For a

wavelet X(f), which was centred about time zero, and which can be
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.dispersed according to equalipn (A1.9) and equation (AI.10), 1
assert that the dispersion can be represented by a single phase

shift, e. That is:
X(f)exp(ie) = |1 + Ln(f/f,)/7Q| X(fL1 + Ln(f/f,)/7Q))
where fb is the reference frequency discussed in Appendix 1.

For an analytic signal, we consider only positive
frequencies, and for a Ricker wavelet, the signal is real, other
than for the phase component introduced by cenfring the wavelet
at TL in the time domain. Assuming that X(f) is é Ricker waveiet

(the second derivative of a Gaussian pulse, Ricker, 1953):
X(f) = (J/1)%exp(=(f/f_)?)
we have, for a wavelet centred about TL:
(f/1 )%exp(~(f/f )?) exp(ie) exp(2mifT;) =
exp(2ni fT, [1 + Ln(f/fp)/7Q1) |1 + Ln(f/f,)/nQ|
(f/7, 0% U1+ Ln(fs0,)/nQ)? exp(=(f/f )11 *+ Ln(f/f,)/nQ]?)
Equating the real parts, and rearranging gives:
Cos(e)= Cos(2nfT, [1 + Ln(fsf,)/7Q) = 2nfT ) |1 + Ln(f/f,)/nQ|?

exp([-(f/f )*Ln(f/f )/nQ) [2 + Ln(f/f,)/7Q))

or:
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Cos(e) = Cos(IT fLn(f7f,)/0) |1 + Ln(f/f,)/n0]?

exp([-(f/fc)an(f/fb)/WQ] [2 + Ln(f/fb)/nQ])
’ (39)

In. the problem as posed hére, I am extracting that part of the
dispersed signal which is most similar to a non-dispersed Ricker
wavelet. The e value returned by the complex KLT.simply tells us
by how much we must rotate this signal to 'bést resemble the
v dispersed waveform. A component of the dispersed waveform is
discarded and appears on the second principal component. Hence,
we should not expect the above equation to exactly reproduce the
empirical result. However, by separating the phase distortive
component of the dispersive process (that associated with the
complex part of the. signal) from the amplitpde distortive
component, we should be able to better mimic the phase

relationship noted from equation (38).

In this case, the phase related factors are those within the
cosine terms,>while the amplitude related terms are the latter
two on the right hand side of equation (39). Dropping the
amplitude related terms and equating the arguments of the cosines

gives:
e = (2T,/Q)fLn(f/f ) (40)

which is of the same form as equation (38).
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The  frequency depehdent _propbrtionality: term iﬁ equ&tion 
(40) may be estimated by cdmparison with that found in cequation
(38). The deinant'frequéncy in the band of interest is f , the
centre frequency of the Ricker wavelet,‘ and . substituting this

into equalién (40) for S, we have:
c(r) = fLn(f /f,) - | (41)

The base freguency fb in this case was fixed at the Nyquisf
frequency,  so that all comparisons between wavelets with
different centre frequencies would be consistent. In Figure 4.32,
I show plots of the magnitude of the observed C(fc) values from
equation (38) plotted against fc, and superimposed on this the
locus of C(fc) values calculated from equation (40). Thé
agréement 1s very good, however, as the bandwidth increases, the

approximation degrades.

This result and that relating e to Qeff also hold true for a
cosine-Gaussian wavelet (i.e. a cosine in a Gaussian envelope).
Results similar to those shown for a Ricker wavelet are shown for
this waveform in Figures 4.33 and 4.34 respectively. Problems of
alignment persist here also, resulting in the deviation from a
linear trend in Figure 4.33. However, as the band width of this
signal 1is narrower than that of a Ricker wavelet, the fit of
C(fc) to the theoretical curve 1is much better at = high

frequencies.
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In conclusion, the constant phase approximation 1is

summarized by:
§-=_2TLféLn(fC/fb)/Q

where ¢ 1is the constant phase shift which best mimics the
dispersive effect on a wavelet of dominant frequency fc,
travelling for TL seconds in a medium with seismic ‘quality factor

Q.

d. Dispersion Quantification Objective Functions.

I deal next with an attempt to estimate @ using the
iterative scheme described earlier. First I present the simple
case of a known reference trace and a single dispersed pulse. All
wavelets are aligned on the basis of complex trace envelopes

prior to subsequent processing.

In the first set of figures (Figure 4.35), two similarity
measures, or objective functions, are shown. The first is the
eigenvalue ratio (EVR) i.e. x(1); the second is the phase
difference e, between the reference trace and the undispersed
wavelet, or a sum of the phase differences in the case of a suite
of  signals. If the signals were made to look identical by the
undispersing procedure, then no phase difference would exist
between them. However, when the signals are dispersed with
respect to one another; the differences between them take on the

appearance of a constant phase rotation. This rotation increases
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with relative dispersion.

In Figure.4.35a, I show the two objective functions .versus
undispersing @ value. In this case, the wavelet (a 35 Hz Ricker
at 1.0s) was originally dispe:sed with 0=30. As is seen, the 'EVR
peaks at. Q=30, and the e value haé a minimum there. In this
simple case the algorithm has sucessfully located the @ value
which optimally removes the effects of dispersion from the
dispersed wavelet. In. Figure 4.35b are shown thev analagous
reéults for an attenuated and  dispersed wavelet: there |is
essentially no difference in the results. Adding random noise
(20% of the maximﬁm amplitude) to the attenuated and dispersed
wavelet, severely degrades the EVR, but e still has a well

defined minimum at the correct Q value.

In the following trials, I wuse a suite of signals
representing the members of a hyperbolic move-out curve. Each
wavelet is undispersed using the Qeff value (equation (37))
appropriate for its arrival time, and the members of the suite of
signals compared to each other simultaneously. The similarity
measure in this case will still be x(1). However, when the data
are members of moveout hyperbolae, certain conditions must be met
for the method of comparisons within hyperbolae to work. Firstly,
we must see a significant difference in the dispersion of each
wavelet along a hyperbola. Otherwise all wavelets will be similar
from the outset, and fhe method will fail.>A wavelet to wavelet

difference can be ensured by having sufficient moveout, such that
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'fhe individual travel times vary significantly. However, if. the
'offset range is tdo'éreat,«the travel times inv the inaividual
earth layers vary greatly, and the cumulative Q value seen by
wavelets propagating along ray paths to aifferent receivers from
a given reflector wil% also vary greatly. In this case the
aséumption that each ray path samples the same cumulative Q wvalue
breaks down, and the suite of wavelets picked from an individual
moveout hyperbola cannot be used to estimate a common cumulative
Q value. For the simple model used here (Figure 4.36a) offsets of
up to 3 km produce little change in cumulative Q over the various
ray paths for a given reflector. The synthetic seismograms in
this example spanned 2 km, and the data were contaminated with 5%

random noise.

In Figure 4.37, I show the objective function (the real KL
EVR, x(1)) versus undispersing @ value for the first three
reflecting horizons. In 4,37a we see a well defined peak at Q=30,
which 1is the correct Q value for this layer. The maxima for the
next two layers give cumulative Q@ values of 42 and 51,
respectively (both these values are too high-see Table 1 later).
After the third moveout hyperbolé, the results degrade severely,
as there 1is insufficient moveout to produce a noticeable
difference in the travel times (hence appearance) of the
waveforms. In Figure 4.38, I show the wavelets for the first
reflecting horizon, from a sequence of undispersing Q values. As

the arrival  time of each wavelet within the window (picked from
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the moveout hyperbola) increases slightly down the window, the
vprocessing will remove broportionally more dispersive effect for
each 'successive wavelet. The correct @ value for the first
horizon is 30. Consequently, the early panels (Q=20 and 25) are
over corrected, and the later panels (Q= 35 and 45) are under
corrected. At Q=30, ﬁhe wavelets within the panel haQe all been

restored to the form of a non-dispersed Ricker wavelet.

Of greater practical interest in this case is the result of
picking one wavelet from each arrival time for a single trace. In
this case I compute the relative dispersion between the first
wavelet and each subsequent wavelet along the trace. This
procedure is repeated for each trace in turn, and the results
summed to estimate the cumulative Q values. This assumes that Q
is not varying laterally over the region of the gather. The
results for. a comparison of the wavelets within each trace
(Figure 4.36) are shown in Figure 4.39. The first comparison
yields the interval @ wvalue for thg first layer, as the
reflection event from the base of layer 1 is being compared to
that from layer 2. Subsequent results give the cumulative Q value
between the top of layer 2 and subsequent reflection horizons.
This procedure was repeated for the case including attenuative
effects. In this instance the objective functions are less
distinct (Figure 4.40). Increasing the noise levels above 10%
severely degraded these results, and for all examples, the

complex KL results were essentially the same.
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From equation (Al.12), we derive that the interval Q value
is related to the cumulétivé»Q value byﬁ

-1

N~

0. =1. {( Z zi)/chmj -

t.)/Qcum,_,}-1
J J i=1 i)/e j=1

i 1
This inversion scheme holds for zero offset data, but was found
to be adequate for the offsets considered here, as there was

little change in the cumulative Q values. For the results based

on the data shown in Figures 4.37 and 4.39, we note in Table 1

that:
TABLE 1
j Layer " Interval Q(True) Q(Disp) Q(Atten)
Thickness Velocity Qcum(est) Q(est) Qcum(est) Q(est)

1 500 1700 30 -- 30 -- 30

2 500 1850 50 53 53 51 51

3 400 2000 80 62 80 66 109

4 500 2150 90 69 90 70 80

5 300 2350 100 78 280 75 124

Where the <columns show: layer number, layer thickness (m),
interval velocity (m/s), actual Q value used to generate the
synthetic data, the cumulative Q valueé picked from the plotted
results, and the Q value estimated from the inversion procedure
(for the dispersed synthetic data), and finally, the cumulative Q
values and estimated Q values for the attenuated and dispersed

synthetic data. The @ value for the first layer was estimated
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from the associated moveout hyperbola, whereas subsequent values

were estimated from the down-trace comparisons. . .

The agreement, especially for the earlier arrivals is very
good (the layer thickness and interval velocity are shown for
interest). ‘The interval travél times for use invthe inversion-
scheme were picked from an RKL velocity analysis of the data, and
not assumed a priori. For the dispersed-only synthetic data,‘the
objective function estimates for all 12 traces were combined.
However, for the attenuated and dispersed data only the first
five traces were used (using more degraded the objective

function).

e. Discussion.

The eigenvalue ratio derived from the complex or real KL
transformation can be used to construct a sensitive similarity
measure. Here I utilized this measure to ascertain when, and
under what conditions, dispersive signal distortion can be
approximated by a constant phase change. With simple synthetic
examples, the constant phase approximation was shown to hold
quite well, and a relationship between effective Q@ value, centre
frequency, and representative phase shift was derived empirically

and analytically.

Further, I used the measure to quantify the degree of

success in removing dispersive effects from signals. In the case
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of a synthetic multichannel>c6mmon shot poiﬁt gather, i‘estimated
the cumulative andainterval Q stfucfuré _fof a léyered' earthi
model. This was vachieVed'.By éomparing waveforms ‘along mbveout'
hyperbolae and down traces within a loop iterating over Q values.
Results for @ structure were degraded by including attenuative
effects, and also by including random noise (above . 10% by

amplitude).
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FIGURE 4.28
Each panel shows: (1) the reference wavelet, (2) the dispersed
wavelet, (3) the real part of the CKL first principal component,
(4) the real part of the CKL second principal component (with
amplitude exaggerated for plotting), and (5) the dispersed
waveform as in (2) rotated by e. Panels are shown for Q= 25 to
115
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FIGURE 4.29
Each panel shows: (1) the reference wavelet, (2) the attenuated
dispersed wavelet, (3) the real part of the CKL first principal
component, (4) the real part of the CKL second principal
component, (with amplitude exaggerated for plotting), and (5) the
dispersed waveform as in (2) rotated by e. Panels are shown for

Q0= 25 to 115



189

N

LN (I EPSTILONI )
_.103

<
T
™
n I 14
2.171 3.323 3.935 4.548 5.16

LN (Q-EFF)

FIGURE 4.30
The effect of varying centre frequency on the locus of log]|e|
versus log(Q s ), for dispersed Ricker wavelets. Deviations from
the locii € gre caused by alignment problems (see text).
Circles=15Hz, triangles=25Hz, +=35Hz, X=45Hz, and diamonds=55Hz
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FIGURE 4.31
The effect of varying centre frequency on the locus of log|e]
versus log(Q ), for attenuated and dispersed Ricker wavelets.
Deviations f%ém the locii are caused by alignment problems (see
text). Circles=15Hz, triangles=25Hz, +=35Hz, X=45Hz, and

diamonds=55Hz
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FIGURE 4.32
The variation of the intercept in Figure 4.30, as a function of
centre frequency (shown as «circles). Triangles represent the
analytical results.
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FIGURE 4.33
The effect of varying centre freguency on the locus of logje]
versus log(Q ), for dispersed cosine-Gaussian wavelets.
Deviations fggé the 1locci are cagused by alignment problems.
Circles=25Hz, triangles=35Hz, +=45Hz, X=55Hz, and diamonds=65Hz
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FIGURE 4.34
The variation of the intercept in Figure 4.33, as a function of
centre frequency (shown as circles). Triangles represent the
analytical results.
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FIGURE 4.36
(a) The layered earth model used for Q inversion.
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values are too high.



vvvvvvvvvv

:
s
3
E
E
4

e

MERERER

-

St

pesssssssrseay
S Tiiadddiais ]
B

3%4

.......
vvvvvvvvv

<
9
9
<
b
-
+
+

4
4
4

Eez=t===ccca|

<4

4
4
4
4
4
4
4
4

FIGURE 4.38
Twelve wavelets picked from the first moveout hyperbola (at 0.4 s
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The RKL objective function for the latter four reflection events
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computed pair-wise between the members of a single trace. The
results from each of the 12 traces were combined to produce a
single compound objective function for a given reflection event.
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CHAPTER 5.

CONCLUSIONS.

SECTION 5.1: REVIEW OF THE GOALS OF THIS WORK.

My initial interest in the Karhunen-Loéve transform
concerned 1its abilitybto quantify the similarity between a pair,
or a suite of signals. This interest arose from my attempts to
quantify dispersion in seismic data. Extending from that work, my
interest shifted to the more general applications of this
transform to image processing problems 1in seismic data

processing.

I first used the transformation to update existing
processing techniques with a view to extracting additional
information from the data. From these endeavours the applications
to stacked . data reconstruction (following the 1lead of the
satellite image processing community), misfit reconstruction,

diffraction separation, and multiple suppression have evolved.

Applying insights gained from work on 'dead trace detection'
(Levy et al., 1983), I considered the problem of grouping seismic
traces on the basis of eigenvector weightings. Subsequently I
found the paper by Hagen (1982) which dealt with the same
problem. Noting some of the pitfalls inferred from this paper
prompted me to investigate that problem further. The work by

LeBlanc and Middleton (1980) and Milligan et al. (1978) dealing
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: with.:acoﬁstic binger records, had showed cdhclusively_vthat
reliablefinfefences'could be made about bétfom sediment type on
the basis of  ei§envector cluster analysis in conjunction with
measurements of physiéal paraméters. The application of ‘this
technigue to seismic stratigraphic character change recognition .

has potential sighificance.

The work on velocity analysis also evolved from my
involvement in the Levy et al. (1983)'study. At that time I was
optimistic of the potential of the velocity analysis technique,
as the results on synthetic examples were extremely encouraging.
The disappointing results with real data point to the limitation

of the technique in the presence of noise.

Finally, I presént my initial work. This began as a search‘
for an ‘'objective function' akin to that devised by
Beresford-Smith and Mason (1980), for the quantification of
dispersive effects. I began by examining the phasor diagrams for
the complex trace of the seismic waveform (i.e. a plot of the
real versus the complex part of the analytic trace). These
results (not shown here) were picturesque, but of 1little
practical use. They dealt with geometric dispersion, which
produces a more profound effect on data than does
attenuation-related dispersion. As a result, I abandoned this
specific topic, and enroute to use of the KL eigenvalue ratio
procedure, I investigated the usefulness of the instantaneous

phase and instantaneous frequency of the data. Neither of the
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latter - transformations proved to be of much help, and finally I

tried the eigenvalue ratio method described in Section 2.II.

While addressing the dispersién problem, I noted the phase
shifted appearance of dispersed signals, and attempted to model
dispersive ‘wévelet character.change.with.a simple constant phase
~change. This procedure proved reasonabiy acceptablé, and may even
obviate the procedure of iterative dispersion removal, as an
estimate of e for a reference and dispersed signal yields a
direct estimate of Q (relative to the reference signal: Section

4.111).

SECTION 5.1I: REMARKS.

a. Image processing.

The main thrust of this work has been to introduce new
applications of image processing techniques based on the real
Karhunen-Loéve transformation (Section 2.I). Recovery of coherent
information for image enhancement of stacked seismic sections and
depiction of anomalous information in those stacked sections

constituted the core of Chapter 3.

The stacked section reconstruction technique (Section 3.1)
has been the most successful to date, and has aroused some
interest in the industrial community, and been applied

extensively to real data in an industrial processing environment.
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Its main advantage is  its . ébility to 'gféatl§> reduce - the
backgrohnd level of ihcoherent nofse.'Of'the topics‘considered in
thisvthesis, I consider this particulér applicétion ‘to be thef
most significant. It is simple to implement,.and with appropriate

data, generally yields good results.

Misfit reconstruction (Section 3.II) 1is probably not as
widely applicable, but for data which are appropriate for this
method, a misfit overlay presentation may be of assistance in
drawihg attention to anomalous zones. The input from an
experienced interpreter and specific knowledge of the data area
would enable more meaningful evaluation of the significance or
usefulness of the misfit overlay. The wusefulness of this
particular technique would best be assessed in an industrial
seismic interpretation environment where access to many diverse

data sets and their geological background are readily available.

An interesting corollary is misfit reconstruction with a
view to isolating diffractions from stacked seismic data (Section
3.II1). Once segregated, the diffraction hyperbolae can form the
basis for residual migration. In addition, in areas .with severe
faulting, the segregated diffractions may indicate the location
of fault edges. This may prove useful in delineating structurally
controlled hydrocarbon trapping features. This application is an
interesting one, but will probably not be of general wuse. More
likely it will best  be wused with specific data from severely

faulted regions.
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Finally, I present a simple and effectiVe' method for the
elimination  of multiple events of knoﬁn  stacking' velocity
(Section- 3.IV). As an aside, an attempt to estimate the multipie
velocity by stacking the‘VA map also proved successful. On real
data, the VA maps highlight the almost cémplete absence _6f
multiple related energy after processing. In addition, primary
events which were of small amplitude 1in the VA map before
processing were greatly enhanced, as the actual data hyperbola
corresponding to the primary event was no longer distorted by
multiple energy arriving at the same time. Also of importance
with this method is its ability to presefve wavelet shape after
stacking. That is, the processing technique does not distort the
waveforms such that the stacked result is degraded. The initial
tests of this technique produced stacked sections which looked
promising. I consider this technique to be the second major
contribution of this thesis. Again, it is simple enough to be
readily incorporated into a standard processing stream, and

produces encouraging results.

b. Similarity.

In Chapter 4, 1 invéstigated the properties of the
eigenvectors and eigenvalues of the transformation. This was a
natural extension of the work on reconstruction, as a more
detailed knowledge of the vagaries of the method was necessary to

appreciate its pitfalls.
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Application of_cluster ahalysis to seismic problems (Section
4,1) showed the same strengths and weaknesses bas did ‘misfit
feconstructibn. Cluster analyéis may provide a useful tool to aid
the explorationist in locating uhuéual features, but much depends
on the presentation of this- data, and on how non-uniform a
particular stacked section may be. As with the = misfit
reconstruction, this technique would best be iﬁvestigated further

in an industrial interpretation environment.

The eigenvalue ratio. criterion constitutes a highly
sensitive similarity measure. However, in the context of velocity
analysis (Section 4.II) with real data, the measure seems to fail
except when applied to small segments of good data. High levels
of background noise seem to be the cause for this failure.
Working with data after deconvolution may increase the
probability of success. However, as demonstrated in Figure 4.21,
the RKL and CKL methods clearly out-performed the conventional
semblance VA in resolving arrivals at early times. This points to
the application of the KL VA to high resolution VA and RMS
velocity inversion, for detailed study of the near surface from

high quality data.

In addition to velocity analysis, I utilized the eigenvalue
ratio criterion to ascertain when, and under what conditions,
dispersive signal distortion can be approximated be a constant
phase change, for synthetic data (Section 4.I1I). Further, I used

the measure to quantify the degree of success 1in removing
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dispersive effects from_signals;,WithJSimple synthetic examples,"
the constant - phase approkiﬁation’vwas-'shown to hold, anda a
relationship between -effective Q Qalue, centre frequency, and
representative phase shift was.defived-empirically; A theoretieal
treatment of the probleﬁ:for_Ricker wavelets-wae'presented, and a

result derived which corroborated the empirical findings.

SECTION 5.I11: RECOMMENDATIONS.

a. Stacking.

The application of the Kéfhunen-Loéve transform to signal -
extraction in stacking of moveout corrected CDP gathers has not
been explored fully in this work. I'introduced this application
(explored in detail by Hemon and Mace, 1978) as a preamble to the
reconstruction of stacked seismic data. It has been noted
(Levy et al., 1983, Ulrych et al., 1983) that both the RKL and
CKL transforms optimally extract coherent signal from a
pre-stacked gather. Although I was a co-author in those studies,
I restricted the scope of this thesis by excluding the stacking

problem due to limitations of time.

b. Reconstruction.

The reconstruction of stacked seismic sections has been
applied extensively to data, with good results in the industrial

environment. Further modifications to the existing algorithm
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wduld ‘inciude the 1incorporation of thev slaht KL procedure
(Section 2.111) to compound reconstruction (Section 3.1(f)). At
present, the computation of a 'dip dependent' covariance. matrix
is- limited to decomposition of a single image. The program which
combines overlapping segments of large seismic sections (i.e. the
'compound reconstruction;' technique) does .not yet inéorporate a
slant KL option. | |

Under the category of misfit reconstruction, I introduced
the misfit seismic section in an attempt to highlight both
anomalous features and diffractions in stacked seismic data; and
also the new multiple suppression technique. Of these three
topics, the latter is of the greatest immediate wvalue. An
intuitively simple scheme, it works well even when only a few
traces per gather are available, whereas the commonly used FK
technique of Ryu (1982) suffers from wrap-around problems (D.

Hampson, pers. comm. 1985),

For the other two applications, the real data examples I
have found so far have not been as convincing. The misfit stacked
section for anomaly recognition will probably work best in areas
with generally parallel structures, whereas the diffraction
separation scheme may produce useful results in regions of severe

faulting.
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c. Similarity Criteria.

In the fourth chapter of this thesis, I considered the
éigenvectors of the KLT and their associated eigeﬁvalues.vThe
cluster groupé determined from the -eigenvectors (Section 4.I)
were shown to belie structural changes, and also to denote
changes in phase character for synthetic data examples. For real
data examples however, the situation was not as clear. Groupings
were seen which correlated with discernable features in the data.
The question remains as to the significance or usefulness of
these correlations. If groupings can be found which match the
inferences of other data, obtained'from well logs for example,
then the technique may have great value. Further development
would best be performed through 1interaction with experienced

seismic interpreters.

Using the -eigenvalue ratio to constitute a similarity
measure (Section 4.III), I expanded the work of Levy et al.
(1983), to appraise the KL VA technique. This gave good results
for early arrivals in clean data: the KL VA events being better
resolved than those of a corresponding semblance VA. The KL VA
technigue may bé of use for high resolution RMS velocity
inversion studies for near surface sediments. However, for data
which had significant 1levels of noise, as evidenced by the

example of Figure 4.25, the KL VA technique failed. This
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inconsistency in performance renders it 1inappropriate as a

standard processing technique.

The final section of Chapter 4 dealt with the effects of
dispersién in synthetic data, and the ability of the KL
eigenvalue ratio to aid in quantification of signal similarity. I
found that the eigenvalue ratio xfm), was a good indicator of
signal- similarity. Further, using the CKL technique to estimate
the phase difference between a dispersed signal and an
undispersed reference, I was able to derive a relationship
between the measured phase shift angle e, and the dispersing Q@
value for the data, both theoretically and empirically for
synthetic seismograms. Further investigation and corroboration of
the synthetic data results could be performed using high quality

waveform recordings, such as those presented by Ricker (1953),

d. Conclusion.

In this work I have demonstrated the applicability of the
Karhunen-Loéve transform to several topics in multichannel
seismic reflection data processing. The 1image reconstruction
techniques are essentially an extension of applications from the
picture processing and satellite data transmission fields.
However, as applied to the separation of residual data (misfit
reconstructions), the techniques are new. The algorithms
developed during this work are currently being tested in an

industrial environment, where additional data and expertise are
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“available to judge the usefulness of the procedures.

Hopefully, further work on these and related topics ‘will be
given consideration by industrial processing groups, with a view
to fully exploiting the potential of the Karhunen-Loéve transform

in the seismic data processing field.
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APPENDIX 1.

- ATTENUATION RELATED DISPERSION.

a. Theory.

For a material which obeys a linear stress-strain
relationship, the @ factor for a monochromatic plane wave is
defined as the ratio of the amplitude 4 to the decrease in
amplitude SA, over a travel path of one wavelength (Aki and

Richards, 1980, p. 168.

For a given angular freQuency w, we have:

Q(w) = -nA/ 84

From this definition, we see that the amplitude of this
monochromatic wave at some time t, is given by:

A1) = Ao (1-7/Q)",

where n is the number of wavelengths A, travelled in time 1.

Using the relation ¢t = n)X/v = 2nn/w, where v is the
velocity, and assuming that Q is constant for all frequencies, we

obtain:
A(t ,w) = Ao(1-wt ,20n)",

which for large n becomes:
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A(L,0) = Agexp(-wi y20) | | (Al. 1)

For a plane wave which undergoes attenuation, we "have from

equation (Al.1):.

A(r) = AoeXp(iwi)exp(—w;/ZQ) ’ , | ‘ (Al.2)
Now, for causality to remain in&iolate, we require:

A(t) = 0, for t < 0

Satisfying this condition reguires that waves be dispersed, as
well as attenuated. Futtermann (1962), wusing. equation - (Al.2)
proceeded to 1invoke the causality condition to obtain three
possible absorption-dispersion pairs. Robinson (1979) wused the

dispersion relation from the third of these pairs:
Vi(f) = Vo/{iI-Ln(ef/fo)/7Q0} (Al.3)

where V(f) is the phase velocity at frequency f,
fo the low frequency cut—qff,
Vo the phase velocity at fo,
Qo the value of the seismic quality factor at fg,
Ln(e) Euler's constant, and

QoVo = Q(FIV(S) (Al. 4)

To render this expression independent of the low frequency limit
Robinson chose an arbitary base frequency fb and redefined the
dispersion relation equation (Al.3) with respect to fb' For some

frequency
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f=f+51, we have:
V(f,48f) = V(f,) + &V ([, f,) - (41.5)

Substituting equation (Al.4) and equation (Al.5) 1into equation

(2.3) and subtracting equation (A47.3) from the result yields:

SV(f L )/V(L) + V(L)Y = Ln(fsf,)/(aQ(f )} (4I.6)

Under the assumption that @ 1is independent of freguency,
which is jﬁstified for relatively ' narrow band seismic signals
(Futtermann, 1962; - Wuenschel, 1965; Kanamori & Anderson, 1977;
Kjartansson, 1979; Aki & Richards, 1980, p.167) equation (Al.6)
yields a simple and useful basis for dispersion modelling or for

the removal of dispersive effects.

Now, consider a pair of plane waves of frequencies f and fb
initiated simultaneously at some arbitary source location Xs. The
arrival times of these waves at some receiver location Xr, is

given by:

T(f) = 8X/V(f), and
T(f,) = 8X/V(f,),

where 88X = X - X .
r 3

thus, T(fy) = T(f) = T(f,) = 8X/V(f)

= T(fy) = T(LIV(S)/V(])
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= 8T(f,/,), say o ._ (A1.7)
By analogybwitﬁ equation (A}.5) let ka):V(fb)%5V(f,fb), s0:
ST(f.f,) = T(f,) = T(L V([ )/W(f,) + ¥V([.],)}
ST(f. 1) /T(1,) = 1~ V(1) /W (f) + & (f.f,))
= V(S L)/, + V(S f,)}
Equating this with equation (Al.6) we have: .
ST(f.f,)/T(f,) = La(fsf,)/{nQ} (41.8)

From equation (Al.7) we see that frequencies above fb will have a
positive 8T, 1i.e. from equation (Al.3) the higher frequencies

arrive first, and vice versa.

Essentially, the »relation specified in equation (Al.3)
states that the effects of a frequency dependent velocity are
equivalent to those obtained from a simple linear scaling of the
time axis for each freguency. This scaling operation is
summarized by the Fourier scaling or similarity theorem

(Bracewell, 1978, p.101).

For our signal x(t), we introduce this frequency dependent

time rescaling factor:
7(f,fb) = (T(fb) + 6T(f,fb))/T(fb)

=1+ 8T(f,f,)/T(Sf,)
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which,from equaiion (A1.8) becomes:
1.1 = 1+ La(fsf) /im0l )
Therefore, upon dispersion we have:
x(1) ======> x(t/y(f. 1)),

i.e. the contribution to x(t) at time t+ from frequency f, for
f > fb say, now arrives in a shorter time than it would in an

undispersed signal.

In the context of this scaling theorem, the time signal

x(t/v) is given by:
x(v/y) = [ vX(fy)exp(i2nft) df
that is:
x(o/y(f, [ ) <===> v ([, [ )X~ ([, [ )]) - (41.10)

It is this expression upon which Robinson's (1979), and our,
programs for dispersion were based, while an attenuative
component in our synthetic data could be introduced via equation

(Al.1), if desired.

b. Numerical Methods.

As the complex spectrum X(f) is rescaled to yX(vf) but only
sampled at X(néf) (where 8f is the frequency interval and n=0,.1

2

2, ...) we must at some stage introduce an interpolation. Our
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approach was to ask the following qUestion: given the discrete
locations néf, where did the spectral componént, with its current
phase and amplitude, come from (assuming that it was shifted by

some phase change due to dispersion)? Knowing that:

, f.o= /0

c

= U1+ Ln(fo/fy)/{nQ} S0,

where fc is the current frequency, and f, 1s the frequency that
was shifted, we develop a Newton-Raphson iterative approach to
finding f, given fc. To do this, we need expressions for both the

function to be minimized, and its derivative:

P,

v o =

C

= [1 + L”(fo/fb)/{ﬂQ}]fo - fc

s
[N
]

0®,/8f
= ] + [1 + Ln(fo/fb)]/{nQ}

Having found the location f,, at which we wish to evaluate the
complex function X(f), we wutilize an interpolation algorithm
based on 1integration-by-parts (after Rosenbaum and Boudreaux,

1981).

To invoke attenuation satisfying equation (AJ.J),‘we sampled
the data with a window of width ¥, centred about the current time

Tc. The data in the window were Fourier transformed and
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multiplied by exp(—ch/2Q). The window was moved along the data
in steps of -W,2 and the resulting‘ set of attenuated complex
spectra transformed back into the time domain. The data segments

were then combined to construct the attenuated time'series.

¢. Cumulative to Interval Q Inversion.

In the same way that interval velocities are averaged to
produce RMS velocities (Dix, 1955), the layer Q values aré seen
in an averaged sense in the measured data. For a layered earth
with interval @ wvalues Q; corresponding to the i/.th layer with
interval travel time L we have:

i
1./0.Y/ Z t. (Al.11)
] I 1 j=1 {

" M ~

1/Qcum. ={

J .
J
A sequence of measured cumulative @ values may be 1iteratively
treated in the usual 'layer stripping' manner, or inverted using

Backus-Gilbert inversion methods, to yield the interval Q

structure.



226

- APPENDIX 2.

THE EFFECT OF DISPERSION ON VIBROSEIS DATA PROCESSING.

a. Introduction.

The material in this Appendix is esSentially the text of a
manuscript in preparation, and 1is a continuation of work

initiated by S. Levy in 1980,

Here we present a background to the problem of dispersion as
it affects a signal with regard to bandwidth and, in light of the
constant @ model, produce synthetic seismograms to demonstrate
how the problems of dispersion manifest themselves. Our adoption
of the constant Q@ model 1is meant to be instructive, not
definitive: we believe that it yields useful 1insights into the
nature of the problem. The constant Q model (Futtermann, 1962;
Wuenschel, 1965; Kanamori & Anderson, 1977; Kjartansson, 1979;
Aki & Richards, 1980, p167) states that attenuation increases
linearly with frequency over the band of interest: 1i.e. @, the

fractional energy loss per cycle, 1is constant for a given medium.

Given the assumption of constant Q, we proceed to show how a
judicial choice of band-width and band location of the input
'signal can partially overcome the deleterious effects of
dispersion. Such choice is only possible with tuned sources, such

as those applied in the Vibroseis® technique. Through the use of
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sYnthetic data, we consider in . some detail the .effect vof
disperéion o'nAA>Vibroseis® ‘data proéessing. We develop the
rationale for a method of separating the wusual multi-octave
Vibroseis® sweep (hereafter referred to as the sweep) into
non-overlapping individual octave sweeps. After recording .the
separate data . sets and «cross cofrelating with the appropriate
sweep, the correlograms from the different sweeps are weighted
and then stacked. It 1is our contention that data gathered and
compiled in this manner may suffer 1less from the effects of
dispersion than would a single, multi-octave sweep, or a stack of
overlapping multi-octave frequency band  sweeps (e.q. the

Combisweep of Werner & Krey (1979)).

b. Theory.

Dispersion can be conceptualised as a frequency dependent
stretching of the time axis (Appendix 1). For a signal x(t) which

becomes dispersed, one has, following equation (Al.9):
x(1)------ > x(t/v(f, 1)),

where v(f,f )=1 + Ln(f/f,)/{nQ} (A42.1)
fb is some base, or reference frequency,
and Q is the seismic quality factor.
From this expression we note that frequencies above fb will be

phase advanced, frequencies below fb phase delayed.
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‘We now. conéider the effect of'bénd width on the_absélute
degree of distortion due to dispersion. Taking. 7(f,fb) from

equation (A2.1) at frequencies f, and /[, (f, < f,), we have:

y(fofy) v (fe fy) = {Ln(fy) = Ln(f;)}/{nQ}

It

Ln(f/f2)/{mQ} - (42, 2)

8Y(f1,f2), say

For a band one octave in width, regardless of frequency, we have
f1 = 2f,, thus 8vy(2f,f) = Ln(2)/{wxQ} = 0.22/Q.

Therefore, for n octaves we have: |
§v(2"f/f) = nLn(2)/{nQ} = 0.22n/Q . | (A2.3)

The difference oy (fy,f2) in the frequency dependent
time-rescaling factor 7(f,fb), over a given band 1is a linear

function of the number of octaves in that band.

Thus, a signal with a spectrum several octaves wide will
have frequencies at either end of the band with large relative
phase shifts. This leads to considerable distortion of the
received dispersed signal. Subsequent deconvolution or cross
correlation with a known or estimated input signature gives rise
to even (greater problems, as the signature used Nin these
- procedures is not dispersed whilst its replications within the

recorded signal are increasingly dispersed, and attenuated, with
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greater travel time.

c. The Vibroseis® Technique.

One of the problems with the Vibroseis® method is the
degradation of signal due in part to dispersien and attenuation.
- Several methods have been suggested whereby the sweep.is modified
or encoded in some way so -as to minimize the. noise _in, and
increase the resolution of the recorded signal (Gurbuz 1982;
Edelmann & Werner 1982; Chapman et al. 1981; Rietsch 1981; Werner

& Krey 1979).

Following from the insights gleened from analysis of the
theory, we propose a modification of the existing~methods.
Recalling that a multi-octave sweep is prone to more distortion
than a single octave sweep, we suggest that the sweep be confined
to one octave. Repeating the sweep successively for three
different octaves would yield three sets of data, each data set
having succumbed to a minimal amount of dispersive effects.
Subsequent cross correlation with the respective sweeps, and
stacking, would produce a multi-octave data set with less
distortion than data of comparable band-width that had been
collected and processed conventionally. Repeating the higher
frequency octave sweeps several times and including these data
sets in the subsequent stack would partially alleviate
attenuative loss by 1initial boosting of the high frequency

content. This procedure could be paralleled with existing data by
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bandpassing the'pfe—correlated data and wavelet, and stacking the

correlograms from several such bana limited replications.

d. Synthetic Data Examples.

The objective of the following examples is to demonstrate
the effects of dispersion and of attenuation on the phase. and
amplitude structure of the input data. To further this end, the

synthetic data were kept simple.

Four synthetic seismograms, each comprising five spikes of
alternating polarity spread over four seconds, were created and
correlated with a particular sweep. For this demonstration,
sweeps of only one half second duration were used (in ‘practice
the sweep 1is at least several seconds in duration) with a
sampling interval of 4 ms. The bandwidths chosen for the four
synthetic sweeps were:

a. 10.0 - 21.5 Hz

b, 18.5 - 43.0 Hz
c. 37.0 - 80.0 Hz
d. 10.0 - 80.0 Hz.

All spectra were tapered and bandwidths a, b, & ¢ were overlapped
slightly to avoid gaps in the spectrum of the stacked
correlogram. The spectra shown in Figure A.2, are _of one half

second of data centred about the pulse near 3.6 s.
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Following © the approaéhes of Robinson (1979) and
Strick(1970), programs were developed to disperse and - attenuate
the data given the seismié quality factor, Q, the fregquency band,
and the base frequehcy, fb (Appendix 1). In each case the base
frequency‘fb was chosen to lie-at the mid-point 6f the respective.
frequenéy band. In Figure A.1 the correlograﬁ of the multi-octave
sweep (a),  1is compared to the correlogram formed from the stack
of the three single octave sweep correlograms (b). The stack was
weighted to balance the'energies in the three octavés (Figure A.2
a and b). As expected, these results are similar. The 1lobes in
the conventional band spectrum (Figure A.2a) are due to Gibb's

phenomenon (Bracewell, 1978).

The four data sets were dispersed with a constant Q of 150,
and cross-correlated with the respective non-dispersed sweeps.
This mimics the actual field procedure, i.e. the recorded signal,
complete with the various 'eagth effects', 1is <cross correlated
with the known input sweep. The three individual octave sweeps
were again stacked. Figure A.3 (a and b) demonstrates the marked
disparity between the two procedures. The multi-octave results
show significant distortion after the first second of two way
travel time. Polarity begins to be lost as the dispersive effects
increasingly distort the phase structure of the signal. However,
the result from the stack, is much better, although it also is

somewhat effected.
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Repeating the above procedure with Q=125 and‘_introducihg
attenuation prior to -diépersion we have, as expeéted,. an
increasing loss 6f resolution with depth és the high frequencies
are attenuated. Figure A.4. (a and b) shows dnce_ more the
comparison of the conventional approach to octave stacking. .
Polarity and position are now severely degraded in the.standard
multi-octave sweep. In the spectra (Figure A.2 d and e) we note

that the high frequencies are severely attenuated.

The . distoftion dﬁe to the time-dependent component of
attenuation can be partially compensated by the implementation of
automatic gain control. However, thé recovery of attenuated
frequencies poses a greater problem. In our case, with the well
defined separate octave sweeps, we proceed to implement a form of
spectral normalization. The mean energy in each octave was
equalized so as to boost the high frequencies. The normalization
is only implemented within the respective frequency band so as
not to amplify nQisé outside the band. Figure A.5 (a and b)
compares the attenuated and dispersed data of Figure A.4b before
and after high frequency recovery. The wavelets sharpen-up
considerably, as noted 1in the respective spectra (Figure A.5 ¢
and d). This procedure assumed no prior knowledge of the Q value
used to introduce attenuation in the original synthetic

seismograms.

This theoretical procedure could be mimiced in the field by

repeating the high frequency octave sweep several times and
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including these pepetitibns:in the stack with the other’ oétaQe'
.5weeps. »Iﬁ efféct we boost the high frequency content of the
cdmpoﬁnd spectrum. In order to implement high freguency recovery
in a mofe exact manner, we would need a detailed knowledge of the
absorptive and scattering contribuﬁions. to the  attenuation

process.

e. Comparison with Previous Work.

Overlapping frequency bands, as suggested by Werner and Krey
(1979) provide an improvement over single multi-octave procedure,
but the method is still inferior to the separate octave approach.
To exemplify this point, we created three more synthetic traces,
dividing the 10 - B0 Hz range into three overlapping bands. They
were:

e. 10 - 52 Hz,

f. 24 - 66 Hz, and

g. 38 - 80 Hz.

All bands are 42 Hz wide, and each subsequent band is shifted by
14 Hz, this choice of frequency bands approximately mimics those
of Werner and Krey (19795. In Figures A.lc & 2c respectively, the
stacked correlogram for the overlapping bands and its spectrum
are shown. Following our earlier examples we disperse the
seismograms using Q=150‘, Figure A.3 compares the correlograms
from the conventional method (a), octave stack (b), and

overlapping band stack (c), for dispersed data. The improvement
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of the octave stack over the overlapping band stack is about the
same as that of the latter over a conventional multi-octave

correlogram.

Attenuating and dispersing the data. with Q=125 produces
results similar to those 1in Figure A.3 only now we see the
drop-off of the high frequencies (Figure A.2f) and the loss of

signal strength with time (Figure A.4).

Chapman et al. (1981), in their paper on the wuse high
frequency Vibroseis® sweeps show several real data sections
comparing conventional to high frequency sweeps. Their data
elegantly show the vast improvement of the high frequency method
over the conventional sweep. However, their higher frequency
sweeps span less than two octaves, while their low sweeps span
more than two octaves. Referring back to equations (A2.2) and
(A2.3) we note that this improvement would be expected given the
reduction in the number of octaves encompassed 1in the high

frequency range.

In order to demonstrate this contention more clearly, we
constructed one more set of synthetic traces:
h. 10 - 32 Hz, and

i, 24 - 80 Hz.

Both these sweeps constitute about: 1.4 octaves, i.e. 10 - 28 and
28 - 80 Hz with some overlap to avoid gaps in the compound

spectrum, énd span the same frequency range as did our first
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triad of ﬁni-octave sﬁeeps. This pair of >sweeps was . correlated
and stackedv in a similar manner to the earlier tfiad} Without a
vknowledge of the impliﬁationé of the constanﬁ Q model we would
expect these two examples, when dispersed, to give similar
résults, as‘the overall frequency range spanned by the . stacked
data sets is the same. The three component stack should have
slightly lower noise., However, after dispersion with @=100, the
result from the stacked pair of 1.4 octave sweeps 1s markedly

inferior to that of the stacked uni-octave triad (Figures A.6).

f. Conclusions.

. Dispersion, which plays a role in the degradatioh of 1long
seismic reéords, produces effects related to the number of
octaves present in a signal. Given the applicability of the
constant (Q model to seismic reflection data, the deleterious
effects of dispersion may be partially avoided by judicial choice
of the band width and band location of the input signal. Such
choice is possible with tuned sources, such as Vibroseis®, and
may prove to be worth the additional recording and processing
costs involved in the proposed method. Systems already designed
to run a Combisweep survey could be readily adjusted to the

octave-stack method.

Regardless of the absolute validity of a constant, or nearly
constant, Q model, analyses such as the one presented here can

offer useful insights into the processes affecting and afflicting
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the propagating seismic wavelet.
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FIGURE A.1
Correlograms for synthetic seismograms:
(a) produced by a single multi-octave sweep,
(b) produced by stacking three single octave sweeps,
(c) produced by stacking three overlapping band sweeps,
all data are of the same final bandwidth. All methods result in a
symmetric waveform with well defined polarity
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FIGURE A.2
The first three spectra correspond to the data of Figure A.1:
(a) produced by a single multi-octave sweep,
(b) produced by stacking three single octave sweeps,
(c) produced by stacking three overlapping band sweeps,
The lobes in (a) are due to Gibb's effect. In (b) the spectra
were tapered and overlapped slightly to avoid gaps, and in (c) we
note the pyramidal effect of stacking Combisweep data
The second triad of spectra ((d) - (e)), correspond to the
attenuated versions of the seismograms which produced the first
three spectra
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Correlograms for dispersed synthetic seismograms (with Q@=150):

(a) produced
(b) produced
(c) produced
all data are

lost after about
single octave sweep. The best result is

stack (b).

1.5 s,

however,

by a single multi-octave sweep,
by stacking three single octave sweeps,

by stacking three overlapping band sweeps,

of the same final bandwidth. Polarity begins to be
the effect is much worse for the
for

single octave
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FIGURE A.4
Corre}ograms for attenuated dispersed synthetic seismograms (with
0=125):
(a) produced by a single multi-octave sweep,
(b) produced by stacking three single octave sweeps,
(c) produced by stacking three overlapping band sweeps,
all data are of the same final bandwidth. Polarity begins to be
lost after about 1.5 s, however, the effect is much worse for the
single octave sweep. The best result is for the single octave
stack (b). Due to the attenuation, the energy dies down rapidly
with time, and the high frequencies are lost,
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(a) The correlogram for an attenuated dispersed synthetic
seismogram produced using the single octave stack method (as per
Figure A.4b)
(b) The same after recovery of the high frequencies (as described
in the text). This effect may be mimicked in the field by
repeating the higher frequency sweeps and then stacking the
correlograms. -
(c) The spectrum of (a).
(d) The spectrum of (b).
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Correlograms for dispersed synthetic seismograms (with Q@=100):
(a) produced by stacking three single octave sweeps,
(b) produced by stacking two 1.4 octave sweeps,

The single octave method (a) produces

a

better

final

even -though both data are of the same final bandwidth.

product,
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